
1

CS 188: Artificial Intelligence
Spring 2007

Lecture 5: Local Search and CSPs
1/30/2007

Srini Narayanan – UC Berkeley

Many slides over the course adapted from Dan klein, Stuart
Russell and Andrew Moore

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

2

Announcements

§ Assignment 1 due today 11:59 PM
§ Assignment 2 out tonight,
§ due 2/12 11:59 PM

§ Python Lab 3-5 PM Friday 2/2

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

3

Consistent Heuristic
A heuristic h is consistent if
1) for each node N and each child N’ of N:

h(N) ≤ c(N,N’) + h(N’)
[Intuition: h gets more and more
precise as we get deeper in the
search tree]

2) for each goal node G:
h(G) = 0

The heuristic is also said to be monotone

(triangle inequality)

N

N’ h(N)

h(N’)

c(N,N’)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

4

1

100

21

2

100

0

90 [99]

1 1+100 2+1

2+99

What to do with revisited states?

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

5

Proof
1) Consider a node N and its child N’

Since h is consistent: h(N) ≤ c(N,N’)+h(N’)

f(N) = g(N)+h(N) ≤ g(N)+c(N,N’)+h(N’) = f(N’)
So, f is non-decreasing along any path

2) If K is selected for expansion, then any other node K’
in the fringe verifies f(K’) ≥ f(K)

So, if one node K’ lies on another path to the state of
K, the cost of this other path is no smaller than the
path to K (since h(K) = h(K’))

N

N’

Result #2: If h is consistent, then whenever
A* expands a node, it has already found
an optimal path to this node’s state

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

6

Trivial Heuristics, Dominance

§ Dominance:

§ Heuristics form a semi-lattice:
§ Max of admissible heuristics is admissible

§ Trivial heuristics
§ Bottom of lattice is the zero heuristic (what

does this give us?)
§ Top of lattice is the exact heuristic

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

7

Summary: A*

§ A* uses both backward costs and
(estimates of) forward costs

§ A* is optimal with admissible and
consistent heuristics

§ Heuristic design is key: often use relaxed
problems

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

8

A* Applications

§ Pathing / routing problems
§ Resource planning problems
§ Robot motion planning
§ Language analysis
§ Machine translation
§ Speech recognition
§ …

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

9

On Completeness and Optimality
§ A* with a consistent heuristic function has nice

properties: completeness, optimality, no need to
revisit states
§ Theoretical completeness does not mean

“practical” completeness if you must wait too
long to get a solution (space/time limit)
§ So, if one can’t design an accurate consistent

heuristic, it may be better to settle for a non-
admissible heuristic that “works well in practice”,
even through completeness and optimality are
no longer guaranteed

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

10

Local Search Methods

§ Queue-based algorithms keep fallback
options (backtracking)

§ Local search: improve what you have until
you can’t make it better

§ Generally much more efficient (but
incomplete)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

11

Example: N-Queens

§ What are the states?
§ What is the start?
§ What is the goal?
§ What are the actions?
§ What should the costs be?

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

12

Types of Problems
§ Planning problems:
§ We want a path to a solution

(examples?)
§ Usually want an optimal path
§ Incremental formulations

§ Identification problems:
§ We actually just want to know what

the goal is (examples?)
§ Usually want an optimal goal
§ Complete-state formulations
§ Iterative improvement algorithms

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

13

Example: 4-Queens

§ States: 4 queens in 4 columns (44 = 256 states)
§ Operators: move queen in column
§ Goal test: no attacks
§ Evaluation: h(n) = number of attacks

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

14

Example: N-Queens

§ Start wherever, move queens to reduce conflicts
§ Almost always solves large n-queens nearly

instantly

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

15

Hill Climbing

§ Simple, general idea:
§ Start wherever
§ Always choose the best neighbor
§ If no neighbors have better scores than

current, quit

§ Why can this be a terrible idea?
§ Complete?
§ Optimal?

§ What’s good about it?

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

16

Hill Climbing Diagram

§ Random restarts?
§ Random sideways steps?

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

17

The Shape of an Easy Problem

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

18

The Shape of a Harder Problem

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

19

The Shape of a Yet Harder Problem

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

20

Remedies to drawbacks of hill
climbing

§Random restart

§Problem reformulation

§ In the end: Some problem spaces are
great for hill climbing and others are
terrible.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

21

Monte Carlo Descent
1) S ß initial state
2) Repeat k times:

a) If GOAL?(S) then return S

b) S’ß successor of S picked at random
c) if h(S’) ≤ h(S) then S ß S’
d) else

- ∆h = h(S’)-h(S)
- with probability ~ exp(−∆h/T), where T is called the

“temperature” S ß S’ [Metropolis criterion]

3) Return failure

Simulated annealing lowers T over the k iterations.
It starts with a large T and slowly decreases T

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

22

Simulated Annealing
§ Idea: Escape local maxima by allowing downhill moves
§ But make them rarer as time goes on

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

23

Simulated Annealing
§ Theoretical guarantee:
§ Stationary distribution:
§ If T decreased slowly enough,

will converge to optimal state!

§ Is this an interesting guarantee?

§ Sounds like magic, but reality is reality:
§ The more downhill steps you need to escape, the less

likely you are to every make them all in a row
§ People think hard about ridge operators which let you

jump around the space in better ways

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

24

Beam Search
§ Like greedy search, but keep K states at all

times:

§ Variables: beam size, encourage diversity?
§ The best choice in MANY practical settings
§ Complete? Optimal?
§ Why do we still need optimal methods?

Greedy Search Beam Search

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

25

Genetic Algorithms

§ Genetic algorithms use a natural selection metaphor
§ Like beam search (selection), but also have pairwise

crossover operators, with optional mutation
§ Probably the most misunderstood, misapplied (and even

maligned) technique around!

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

26

Example: N-Queens

§ Why does crossover make sense here?
§ When wouldn’t it make sense?
§ What would mutation be?
§ What would a good fitness function be?

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

27

The Basic Genetic Algorithm
1. Generate random population of chromosomes
2. Until the end condition is met, create a new

population by repeating following steps
1. Evaluate the fitness of each chromosome
2. Select two parent chromosomes from a population,

weighed by their fitness
3. With probability pc cross over the parents to form a

new offspring.
4. With probability pm mutate new offspring at each

position on the chromosome.
5. Place new offspring in the new population

3. Return the best solution in current population

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

28

Search problems

Blind search

Heuristic search:
best-first and A*

Construction of heuristics Local searchVariants of A*

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

29

Continuous Problems
§ Placing airports in Romania
§ States: (x1,y1,x2,y2,x3,y3)
§ Cost: sum of squared distances to closest city

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

30

Gradient Methods

§ How to deal with continous (therefore infinite)
state spaces?
§ Discretization: bucket ranges of values
§ E.g. force integral coordinates

§ Continuous optimization
§ E.g. gradient ascent

§ More later in the course
Image from vias.org

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

31

Constraint Satisfaction Problems

§ Standard search problems:
§ State is a “black box”: any old data structure
§ Goal test: any function over states
§ Successors: any map from states to sets of states

§ Constraint satisfaction problems (CSPs):
§ State is defined by variables Xi with values from a

domain D (sometimes D depends on i)
§ Goal test is a set of constraints specifying

allowable combinations of values for subsets of
variables

§ Simple example of a formal representation
language

§ Allows useful general-purpose algorithms with
more power than standard search algorithms

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

32

Example: N-Queens

§ Formulation 1:
§ Variables:
§ Domains:
§ Constraints

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

33

Example: N-Queens

§ Formulation 2:
§ Variables:

§ Domains:

§ Constraints:

… there’s an even better way! What is it?

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

34

Example: Map-Coloring
§ Variables:

§ Domain:

§ Constraints: adjacent regions must have
different colors

§ Solutions are assignments satisfying all
constraints, e.g.:

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

35

Example: The Waltz Algorithm
§ The Waltz algorithm is for interpreting line drawings of

solid polyhedra
§ An early example of a computation posed as a CSP

§ Look at all intersections
§ Adjacent intersections impose constraints on each other

?

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

36

Waltz on Simple Scenes
§ Assume all objects:
§ Have no shadows or cracks
§ Three-faced vertices
§ “General position”: no junctions

change with small movements of
the eye.

§ Then each line on image is
one of the following:
§ Boundary line (edge of an

object) (→) with right hand of
arrow denoting “solid” and left
hand denoting “space”
§ Interior convex edge (+)
§ Interior concave edge (-)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

37

Legal Junctions
§ Only certain junctions are

physically possible
§ How can we formulate a CSP to

label an image?
§ Variables: vertices
§ Domains: junction labels
§ Constraints: both ends of a line

should have the same label

x

y
(x,y) in

, , …

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

38

Example: Map-Coloring

§ Solutions are complete and consistent
assignments, e.g., WA = red, NT = green,Q =
red,NSW = green,V = red,SA = blue,T = green

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

39

Constraint Graphs
§ Binary CSP: each constraint

relates (at most) two variables

§ Constraint graph: nodes are
variables, arcs show
constraints

§ General-purpose CSP
algorithms use the graph
structure to speed up search.
E.g., Tasmania is an
independent subproblem!

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

40

Example: Cryptarithmetic

§ Variables:

§ Domains:

§ Constraints:

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

41

Varieties of CSPs
§ Discrete Variables
§ Finite domains

§ Size d means O(dn) complete assignments
§ E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

§ Infinite domains (integers, strings, etc.)
§ E.g., job scheduling, variables are start/end times for each job
§ Need a constraint language, e.g., StartJob1 + 5 < StartJob3
§ Linear constraints solvable, nonlinear undecidable

§ Continuous variables
§ E.g., start/end times for Hubble Telescope observations
§ Linear constraints solvable in polynomial time by LP methods

(see cs170 for a bit of this theory)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

42

Varieties of Constraints
§ Varieties of Constraints

§ Unary constraints involve a single variable (equiv. to shrinking domains):

§ Binary constraints involve pairs of variables:

§ Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

§ Preferences (soft constraints):
§ E.g., red is better than green
§ Often representable by a cost for each variable assignment
§ Gives constrained optimization problems
§ (We’ll ignore these until we get to Bayes’ nets)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

43

Real-World CSPs
§ Assignment problems: e.g., who teaches what class
§ Timetabling problems: e.g., which class is offered when

and where?
§ Hardware configuration
§ Spreadsheets
§ Transportation scheduling
§ Factory scheduling
§ Floorplanning

§ Many real-world problems involve real-valued
variables…

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

44

Standard Search Formulation

§ Standard search formulation of CSPs
(incremental)
§ Let's start with the straightforward, dumb

approach, then fix it
§ States are defined by the values assigned so far
§ Initial state: the empty assignment, {}
§ Successor function: assign a value to an unassigned

variable
§ fail if no legal assignment

§ Goal test: the current assignment is complete and
satisfies all constraints

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

45

Search Methods

§ What does DFS do?

§ What’s the obvious problem here?
§ What’s the slightly-less-obvious problem?

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

46

CSP formulation as search

1. This is the same for all CSPs
2. Every solution appears at depth n with n

variables
à use depth-first search

3. Path is irrelevant, so can also use
complete-state formulation

4. b = (n - l)d at depth l, hence n! · dn

leaves

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

47

Backtracking Search
§ Idea 1: Only consider a single variable at each point:

§ Variable assignments are commutative
§ I.e., [WA = red then NT = green] same as [NT = green then WA = red]
§ Only need to consider assignments to a single variable at each step
§ How many leaves are there?

§ Idea 2: Only allow legal assignments at each point
§ I.e. consider only values which do not conflict previous assignments
§ Might have to do some computation to figure out whether a value is ok

§ Depth-first search for CSPs with these two improvements is called
backtracking search

§ Backtracking search is the basic uninformed algorithm for CSPs

§ Can solve n-queens for n ≈ 25

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

48

Backtracking Search

§ What are the choice points?

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

49

Backtracking Example

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

50

Improving Backtracking

§ General-purpose ideas can give huge gains in
speed:
§ Which variable should be assigned next?
§ In what order should its values be tried?
§ Can we detect inevitable failure early?
§ Can we take advantage of problem structure?

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

