Announcements

- **Reminder:**
 - Project 1.1 is due Friday at 11:59pm!
 - Check web page for this week's office hours

- **Sections this Monday**
 - Can go to any of them, or multiple (unless over capacity of room)
 - Dan / John back late today

- **Don't forget about the newsgroup**
 - Good for course questions
 - Good for finding partners

Constraint Satisfaction Problems

- Standard search problems:
 - State is a "black box": any old data structure
 - Goal test: any function over states
 - Successors: any map from states to sets of states
- Constraint satisfaction problems (CSPs):
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
 - Simple example of a formal representation language
 - Allows useful general-purpose algorithms with more power than standard search algorithms

Example: N-Queens

- **Formulation 1:**
 - Variables: X_{ij}
 - Domains: $[0, 1]$
 - Constraints:
 \[
 \forall i, j, k : (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\} \\
 \forall i, j, k : (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\} \\
 \forall i, j, k : (X_{ij}, X_{ik+k-j}) \in \{(0, 0), (0, 1), (1, 0)\} \\
 \sum_{i,j} X_{ij} = N
 \]

Example: Map-Coloring

- Variables: $WA, NT, Qx, NSW, V, SA, T$
- Domain: $D = \{\text{red, green, blue}\}$
- Constraints: adjacent regions must have different colors

 \[
 WA \neq NT \\
 (WA, NT) \in \{(\text{red, green}), (\text{red, blue}), (\text{green, red})\} \\
 \]
- Solutions are assignments satisfying all constraints, e.g.:

 \[
 \{WA = \text{red}, NT = \text{green}, Q = \text{red}, NSW = \text{green, V = red, SA = blue, T = green}\}
 \]
Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra
- An early example of a computation posed as a CSP

- Look at all intersections
- Adjacent intersections impose constraints on each other

Waltz on Simple Scenes

- Assume all objects:
 - Have no shadows or cracks
 - Three-faced vertices
 - "General position": no junctions change with small movements of the eye.
- Then each line on image is one of the following:
 - Boundary line (edge of an object) (→) with right hand of arrow denoting "solid" and left hand denoting "space"
 - Interior convex edge (+)
 - Interior concave edge (−)

Legal Junctions

- Only certain junctions are physically possible
- How can we formulate a CSP to label an image?
- Variables: vertices
- Domains: junction labels
- Constraints: both ends of a line should have the same label

Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: Cryptarithmetic

- Variables:
 - \(F, T, U, W, O, X_1, X_2 \)
- Domains:
 - \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
- Constraints:
 - \(O + O = R + 10 \cdot X_1 \)
 - ... Varieties of CSPs

- Discrete Variables
 - Finite domains
 - Size \(n \) means \(\binom{d}{n} \) complete assignments
 - E.g., Boolean CSPs (including Boolean satisfiability (NP-complete))
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Need a constraint language, e.g., \(\text{StartJob}_1 + 5 < \text{StartJob}_2 \)
 - Linear constraints solvable, nonlinear undecidable

- Continuous variables
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods (see cs170 for a bit of this theory)
Varieties of Constraints

- **Varieties of Constraints**
 - Unary constraints involve a single variable (equiv. to shrinking domains):
 \[SA \neq \text{green} \]
 - Binary constraints involve pairs of variables:
 \[SA \neq WA \]
 - Higher-order constraints involve 3 or more variables:
 - e.g., cryptarithmic column constraints
 - Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We’ll ignore these until we get to Bayes’ nets)

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Spreadsheets
- Transportation scheduling
- Factory scheduling
- Floorplanning
- Many real-world problems involve real-valued variables...

Standard Search Formulation

- Standard search formulation of CSPs (incremental)
- Let’s start with the straightforward, dumb approach, then fix it
- States are defined by the values assigned so far
 - Initial state: the empty assignment, {};
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints

Search Methods

- What does BFS do?
- What does DFS do?
 - [ANIMATION]
- What’s the obvious problem here?
- What’s the slightly-less-obvious problem?

Backtracking Search

- Idea 1: Only consider a single variable at each point:
 - Variable assignments are commutative
 - I.e. \([WA = \text{red} \text{then} NT = \text{green}]\) same as \([NT = \text{green} \text{then} WA = \text{red}]\)
 - Only need to consider assignments to a single variable at each step
 - How many leaves are there?
- Idea 2: Only allow legal assignments at each point
 - I.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to figure out whether a value is ok
- Depth-first search for CSPs with these two improvements is called backtracking search
 - [ANIMATION]
- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve n-queens for n \(\approx 25\)

Backtracking Search

- What are the choice points?
Backtracking Example

Improving Backtracking

- General-purpose ideas can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
 - Can we take advantage of problem structure?

Minimum Remaining Values

- Minimum remaining values (MRV):
 - Choose the variable with the fewest legal values
- Why min rather than max?
- Called most constrained variable
- “Fail-fast” ordering

Degree Heuristic

- Tie-breaker among MRV variables
- Degree heuristic:
 - Choose the variable with the most constraints on remaining variables
- Why most rather than fewest constraints?

Least Constraining Value

- Given a choice of variable:
 - Choose the least constraining value
 - The one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this!
- Why least rather than most?
- Combining these heuristics makes 1000 queens feasible

Forward Checking

- Idea: Keep track of remaining legal values for unassigned variables
- Idea: Terminate when any variable has no legal values
Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn’t provide early detection for all failures.

 - NT and SA cannot both be blue!
 - Why didn’t we detect this yet?
 - Constraint propagation repeatedly enforces constraints (locally)

Arc Consistency

- Simplest form of propagation makes each arc consistent
 - \(X \rightarrow Y \) is consistent if for every value \(x \) there is some allowed \(y \)

- If \(X \) loses a value, neighbors of \(X \) need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- What’s the downside of arc consistency?
- Can be run as a preprocessor or after each assignment

Arc Consistency

- Runtime: \(O(n d^2) \), can be reduced to \(O(n d^2) \)
- … but detecting all possible future problems is NP-hard — why?

Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has \(c \) variables out of \(n \) total
- Worst-case solution cost is \(O(n c |d|^c) \), linear in \(n \)

 - E.g., \(n = 80, d = 2, c = 20 \)
 - \(2^{10} = 4 \) billion years at 10 million nodes/sec
 - \((4)(2^{20}) = 0.4 \) seconds at 10 million nodes/sec

Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in \(O(n d^2) \) time (next slide)

 - Compare to general CSPs, where worst-case time is \(O(d^n) \)

 - This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Tree-Structured CSPs

- Choose a variable as root, order variables from root to leaves such that every node’s parent precedes it in the ordering

 - For \(i = n : 2 \), apply RemoveInconsistent(\(\text{Parent}(X)_i, X_i \))

 - For \(i = 1 : n \), assign \(X_i \) consistently with \(\text{Parent}(X)_i \)

 - Runtime: \(O(n d^2) \)
Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O((d^c)(n-c)d^2)$, very fast for small c

Iterative Algorithms for CSPs

- Greedy and local methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - i.e., hill climb with $h(n) = \text{total number of violated constraints}$

Example: 4-Queens

- States: 4 queens in 4 columns ($4^4 = 256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: $h(n) = \text{number of attacks}$

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $n = 10,000,000$)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio $\frac{n}{n^2}$

Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
- Backtracking = depth-first search with one legal variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- The constraint graph representation allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice

Local Search Methods

- Queue-based algorithms keep fallback options (backtracking)
- Local search: improve what you have until you can't make it better
- Generally much more efficient (but incomplete)
Types of Problems

- Planning problems:
 - We want a path to a solution (examples?)
 - Usually want an optimal path
 - Incremental formulations

- Identification problems:
 - We actually just want to know what the goal is (examples?)
 - Usually want an optimal goal
 - Complete-state formulations
 - Iterative improvement algorithms

Hill Climbing

- Simple, general idea:
 - Start wherever
 - Always choose the best neighbor
 - If no neighbors have better scores than current, quit

- Why can this be a terrible idea?
 - Complete?
 - Optimal?
 - What’s good about it?

Hill Climbing Diagram

Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

```plaintext
function SIMULATED-ANNEALING (problem, schedule) returns a solution state

inputs: problem, a problem
  schedule, a mapping from time to "temperature"

local variables: current, a node
next, a node
T, a "temperature" controlling prob. of downhill steps

current ← MAKE-NODE (INITIAL-STATE [problem])

for t ← 1 to ∞ do
  T ← schedule[t]
  if T = 0 then return current
  next ← a randomly selected successor of current
  ΔE ← VALUE [next] − VALUE [current]
  if ΔE > 0 then current ← next
  else current ← current with probability e^(-ΔE / T)
```

Simulated Annealing

- Theoretical guarantee:
 - Stationary distribution: \(p(x) \propto e^{-E(x)/T} \)
 - If T decreased slowly enough, will converge to optimal state!

- Is this an interesting guarantee?

- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape, the less likely you are to every make them all in a row
 - People think hard about ridge operators which let you jump around the space in better ways

Beam Search

- Like greedy search, but keep K states at all times:

```
Greedy Search Beam Search
```

- Variables: beam size, encourage diversity?
- The best choice in MANY practical settings
- Complete? Optimal?
- Why do we still need optimal methods?
Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
- Like beam search (selection), but also have pairwise crossover operators, with optional mutation
- Probably the most misunderstood, misapplied (and even maligned) technique around!

Example: N-Queens

- Why does crossover make sense here?
- When wouldn’t it make sense?
- What would mutation be?
- What would a good fitness function be?

Continuous Problems

- Placing airports in Romania
 - States: (x1, y1, x2, y2, x3, y3)
 - Cost: sum of squared distances to closest city

Gradient Methods

- How to deal with continuous (therefore infinite) state spaces?
- Discretization: bucket ranges of values
 - E.g. force integral coordinates
- Continuous optimization
 - E.g. gradient ascent
 \[\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3} \right) \]
 \[x \leftarrow x + \alpha \nabla f(x) \]