1 More n-Queens

If you came to last week’s section, you remember we were able to solve the n-queens problem with $n = 8$ in around 1 second, using depth first search. What about $n = 100$?

![The first solution found for the 100-queens problem by our CSP solver in 0.21 seconds.](image)

(1) Formulate the n-queens problem as a CSP:

Variables:
Each column of the board is a variable.

Domains:

Constraints:

(2) Draw the constraint graph for your formulation with $n = 4$.

(3) Use backtracking search with forward checking to solve 4-queens. Refer to the python code on the next page. How many backtracks are required?
def recursive_backtracking(assignment, csp):
 ## base case
 if len(assignment) == len(csp.vars): return assignment

 ## choose a variable
 var = select_unassigned_variable(assignment, csp)

 ## try each possible value of that variable
 for val in order_domain_values(var, assignment, csp):
 ## if no immediate conflicts, add this to the assignment
 if csp.num_conflicts(var, val, assignment) == 0:
 csp.assign(var, val, assignment)

 ## recursively add to the assignment
 result = recursive_backtracking(assignment, csp)
 if result != None: return result

 ## if this value doesn’t work, backtrack (unassign it and try the next value)
 csp.unassign(var, assignment)

 ## tried everything and nothing worked
 return None

Python code for recursive backtracking search.

2 Improving Backtracking Search

Explain how to incorporate each of these additions into the backtracking search code above:

(1) Forward Checking

(2) Minimum Remaining Values (MRV) heuristic

(3) Arc Consistency

3 Sudoku Challenge

With forward checking and MRV, our CSP implementation can solve any standard 9x9 Sudoku puzzle quite quickly. But 16x16 Sudoku is more challenging. Can you modify, add to, or rewrite our code to solve the “reallyHardPuzzle” in under 1 second?