Announcements

- **Projects:**
 - Project 1 (Search) is out, due next Monday 9/14
 - You don’t need to submit answers the project’s discussion questions
 - Use Python 2.5 (on EECS instructional machines), 2.6 interpreter is backwards compatible, so also OK
 - 5 slip days for projects; up to two per deadline
 - Try pair programming, not divide-and-conquer
- **Newsgroup:**
 - Seems like WebNews wants your original password (inst is aware), or use Thunderbird, etc.

Today

- A* Search
- Heuristic Design

Recap: Search

- **Search problem:**
 - States (configurations of the world)
 - Successor function: a function from states to lists of (state, action, cost) triples; drawn as a graph
 - Start state and goal test
- **Search tree:**
 - Nodes: represent plans for reaching states
 - Plans have costs (sum of action costs)
- **Search Algorithm:**
 - Systematically builds a search tree
 - Chooses an ordering of the fringe (unexplored nodes)
General Tree Search

Function: TREE-SEARCH(problem, strategy) returns a solution, or failure
initiates the search tree using the initial state of problem
loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
end

Example: flip top two
Cost: 2

Path to reach goal: flip four, flip three
Total cost: 7

Uniform Cost Search

- Strategy: expand lowest path cost
- The good: UCS is complete and optimal!
- The bad:
 - Explores options in every "direction"
 - No information about goal location

Best First (Greedy)

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state
- A common case:
 - Best-first takes you straight to the (wrong) goal
 - Worst-case: like a badly-guided DFS

Example: Heuristic Function

Heuristic: the largest pancake that is still out of place

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost $g(n)$
- Best-first orders by goal proximity, or forward cost $h(n)$

- A* Search orders by the sum: $f(n) = g(n) + h(n)$
When should \(A^* \) terminate?

- Should we stop when we enqueue a goal?
 - No: only stop when we dequeue a goal

Is \(A^* \) Optimal?

- What went wrong?
 - Actual bad goal cost < estimated good goal cost
 - We need estimates to be less than actual costs!

Admissible Heuristics

- A heuristic \(h \) is **admissible** (optimistic) if:
 \[
 h(n) \leq h^*(n)
 \]
 where \(h^*(n) \) is the true cost to a nearest goal

- Examples:

Coming up with admissible heuristics is most of what’s involved in using \(A^* \) in practice.

Optimality of \(A^* \): Blocking

- Notation:
 - \(g(n) \) = cost to node \(n \)
 - \(h(n) \) = estimated cost from \(n \) to the nearest goal (heuristic)
 - \(f(n) = g(n) + h(n) \) = estimated total cost via \(n \)
 - \(G^* \): a lowest cost goal node
 - \(G \): another goal node

Properties of \(A^* \)

- Uniform-Cost
- \(A^* \)
UCS vs A* Contours

- Uniform-cost expanded in all directions
- A* expands mainly toward the goal, but does hedge its bets to ensure optimality

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available
- Inadmissible heuristics are often useful too (why?)

Example: 8 Puzzle

- What are the states?
- How many states?
- What are the actions?
- What states can I reach from the start state?
- What should the costs be?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- \(h(\text{start}) = 8 \)
- This is a relaxed-problem heuristic

<table>
<thead>
<tr>
<th>Average nodes expanded when optimal path has length...</th>
<th>4 steps</th>
<th>8 steps</th>
<th>12 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS</td>
<td>112</td>
<td>6,300</td>
<td>3.6 \times 10^6</td>
</tr>
<tr>
<td>TILES</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
<tr>
<td>MANHATTAN</td>
<td>12</td>
<td>25</td>
<td>73</td>
</tr>
</tbody>
</table>

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- Why admissible?
- \(h(\text{start}) = 3 + 1 + 2 + ... = 18 \)

<table>
<thead>
<tr>
<th>Average nodes expanded when optimal path has length...</th>
<th>4 steps</th>
<th>8 steps</th>
<th>12 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>TILES</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
<tr>
<td>MANHATTAN</td>
<td>12</td>
<td>25</td>
<td>73</td>
</tr>
</tbody>
</table>

8 Puzzle III

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?
- With A*: a trade-off between quality of estimate and work per node!
Trivial Heuristics, Dominance

- Dominance: \(h_a \geq h_c \) if \(\forall n : h_a(n) \geq h_c(n) \)
- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible
 \[h(n) = \max(h_a(n), h_b(n)) \]
- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

Other A* Applications

- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition

Other A* Applications

- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition

Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work. Why?

Graph Search

- In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

Graph Search

- Very simple fix: never expand a state twice

Graph Search

- Can this wreck completeness? Optimality?
Optimality of A* Graph Search

Proof:
- New possible problem: nodes on path to \(G^*\) that would have been in queue aren’t, because some worse \(n'\) for the same state as some \(n\) was dequeued and expanded first (disaster!)
- Take the highest such \(n\) in tree
- Let \(p\) be the ancestor which was on the queue when \(n'\) was expanded
- Assume \(f(p) < f(n)\)
- \(f(n') < f(n)\) because \(n'\) is suboptimal
- \(p\) would have been expanded before \(n'\)
- So \(n\) would have been expanded before \(n'\), too
- Contradiction!

Consistency

- Wait, how do we know parents have better f-values than their successors?
- Couldn’t we pop some node \(n\), and find its child \(n'\) to have lower f-value?
- YES:

\[
\begin{align*}
g = 10 \\
n = 0 \\
B \\
C
\end{align*}
\]

- What can we require to prevent these inversions?
- Consistency: \(c(n, a, n') \geq h(n) - h(n')\)
- Real cost must always exceed reduction in heuristic

Optimality

- Tree search:
 - A* optimal if heuristic is admissible (and non-negative)
 - UCS is a special case (\(h = 0\))

- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (\(h = 0\) is consistent)

- Consistency implies admissibility
- In general, natural admissible heuristics tend to be consistent

Summary: A*

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible heuristics
- Heuristic design is key: often use relaxed problems