CS 188: Artificial Intelligence
Fall 2009

Lecture 4: Constraint Satisfaction
9/8/2009

Dan Klein – UC Berkeley
Multiple slides adapted from Stuart Russell or Andrew Moore

Announcements

- Project 1: Search is due Monday
 - Find partners at end of lecture, in front

- Written 1: Search and CSPs out soon

- Newsgroup: check it out
Today

- Search Conclusion
- Constraint Satisfaction Problems

A* Review

- A* uses both backward costs g and forward estimate h: $f(n) = g(n) + h(n)$
- A* tree search is optimal with admissible heuristics (optimistic future cost estimates)
- Heuristic design is key: relaxed problems can help
A* Graph Search Gone Wrong

State space graph

- **S** (h=2)
- **A** (h=4)
- **B** (h=1)
- **C** (h=1)
- **G** (h=0)

Search tree

- **S** (0+2)
- **A** (1+4) → **C** (2+1)
- **B** (1+1) → **C** (3+1)
- **G** (5+0) → **G** (6+0)

Consistency

The story on Consistency:

- **Definition:**
 \[\text{cost}(A \text{ to } C) + h(C) \geq h(A) \]

- **Consequence in search tree:**
 - Two nodes along a path: \(N_A, N_C \)
 - \(g(N_C) = g(N_A) + \text{cost}(A \text{ to } C) \)
 - \(g(N_C) + h(C) \geq g(N_A) + h(A) \)

- The f value along a path never decreases
- Non-decreasing f means you’re optimal to every state (not just goals)
Optimality Summary

- **Tree search:**
 - A* optimal if heuristic is admissible (and non-negative)
 - Uniform Cost Search is a special case (h = 0)

- **Graph search:**
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)

- In general, natural admissible heuristics tend to be consistent

- Remember, costs are always positive in search!

Mazeworld Demo!
What is Search For?

- Models of the world: single agents, deterministic actions, fully observed state, discrete state space

- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics to guide, fringe to keep backups

- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems

Constraint Satisfaction Problems

- Standard search problems:
 - State is a “black box”: arbitrary data structure
 - Goal test: any function over states
 - Successor function can be anything

- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

- Simple example of a formal representation language

- Allows useful general-purpose algorithms with more power than standard search algorithms
Example: N-Queens

- **Formulation 1:**
 - Variables: X_{ij}
 - Domains: $\{0, 1\}$
 - Constraints:
 \[
 \forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}
 \forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\}
 \forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\}
 \forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\}
 \sum_{i,j} X_{ij} = N
 \]

Example: N-Queens

- **Formulation 1.5:**
 - Variables: Q_k
 - Domains: $\{11, 12, 13, \ldots \ 21, \ldots NN\}$
 - Constraints:
 \[
 \forall i, j \ \text{non-threatening}(Q_i, Q_j)
 \forall i, j \ (Q_i, Q_j) \in \{(11, 23), (11, 24), \ldots \}
 \]

... there's an even better way! What is it?
Example: N-Queens

- **Formulation 2:**
 - Variables: Q_k
 - Domains: $\{1, 2, 3, \ldots N\}$
 - Constraints:
 - Implicit: $\forall i, j \text{ non-threatening}(Q_i, Q_j)$
 - Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$
 \ldots

Example: Map-Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domain: $D = \{\text{red, green, blue}\}$
- Constraints: adjacent regions must have different colors
 - $WA \neq NT$
 - $(WA, NT) \in \{(\text{red, green}), (\text{red, blue}), (\text{green, red}), \ldots\}$
- Solutions are assignments satisfying all constraints, e.g.:
 - $\{WA = \text{red}, NT = \text{green}, Q = \text{red}, NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green}\}$
Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: Cryptarithmetic

- Variables (circles): \(F, T, U, W, R, O, X_1, X_2, X_3 \)
- Domains: \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
- Constraints (boxes):
 - alldiff(\(F, T, U, W, R, O \))
 - \(O + O = R + 10 \cdot X_1 \)
 - \ldots
Example: Sudoku

- Variables:
 - Each (open) square
- Domains:
 - \{1,2,\ldots,9\}
- Constraints:
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra
- An early example of a computation posed as a CSP

- Look at all intersections
- Adjacent intersections impose constraints on each other
Waltz on Simple Scenes

- Assume all objects:
 - Have no shadows or cracks
 - Three-faced vertices
 - “General position”: no junctions change with small movements of the eye.

- Then each line on image is one of the following:
 - Boundary line (edge of an object) (→) with right hand of arrow denoting “solid” and left hand denoting “space”
 - Interior convex edge (+)
 - Interior concave edge (−)

Legal Junctions

- Only certain junctions are physically possible
- How can we formulate a CSP to label an image?
- Variables: vertices
- Domains: junction labels
- Constraints: both ends of a line should have the same label

\[(x,y) \text{ in } \{,\ldots\}\]
Varieties of CSPs

- **Discrete Variables**
 - Finite domains
 - Size d means $O(d^n)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

- **Continuous variables**
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods (see cs170 for a bit of this theory)

Varieties of Constraints

- **Varieties of Constraints**
 - Unary constraints involve a single variable (equiv. to shrinking domains):
 \[SA \neq \text{green} \]
 - Binary constraints involve pairs of variables:
 \[SA \neq WA \]
 - Higher-order constraints involve 3 or more variables:
 - E.g., cryptarithmetic column constraints

- **Preferences (soft constraints):**
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We’ll ignore these until we get to Bayes’ nets)
Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Floorplanning
- Fault diagnosis
- … lots more!

- Many real-world problems involve real-valued variables…

Standard Search Formulation

- Standard search formulation of CSPs (incremental)
- Let’s start with the straightforward, dumb approach, then fix it

- States are defined by the values assigned so far
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints

- Simplest CSP ever: two bits, constrained to be equal
Search Methods

- What does BFS do?
- What does DFS do?
 - [demo]
- What’s the obvious problem here?
- What’s the slightly-less-obvious problem?

Backtracking Search

- Idea 1: Only consider a single variable at each point
 - Variable assignments are commutative, so fix ordering
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
 - How many leaves are there?

- Idea 2: Only allow legal assignments at each point
 - I.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to figure out whether a value is ok
 - “Incremental goal test”

- Depth-first search for CSPs with these two improvements is called backtracking search (useless name, really)
 - [DEMO]

- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve n-queens for $n \approx 25$
5 Minute Break

Courtesy of Dan Gillick

Backtracking Search

```plaintext
function Backtracking Search(esp) returns solution/failure
return Recursive-Backtracking({}, esp)

function Recursive-Backtracking(assignment, esp) returns solution/failure
if assignment is complete then return assignment
var ← Select-Unassigned-Variable(Variables[esp], assignment, esp)
for each value in Order-Domain-Values(var, assignment, esp) do
    if value is consistent with assignment given Constraints[esp] then
        add {var = value} to assignment
        result ← Recursive-Backtracking(assignment, esp)
        if result ≠ failure then return result
    remove {var = value} from assignment
return failure
```

- What are the choice points?
Improving Backtracking

- General-purpose ideas can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
 - Can we take advantage of problem structure?
Minimum Remaining Values

- Minimum remaining values (MRV):
 - Choose the variable with the fewest legal values

- Why min rather than max?
- Also called “most constrained variable”
- “Fail-fast” ordering

Degree Heuristic

- Tie-breaker among MRV variables
- Degree heuristic:
 - Choose the variable participating in the most constraints on remaining variables

- Why most rather than fewest constraints?
Least Constraining Value

- Given a choice of variable:
 - Choose the least constraining value
 - The one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this!

- Why least rather than most?

- Combining these heuristics makes 1000 queens feasible

Forward Checking

- Idea: Keep track of remaining legal values for unassigned variables (using immediate constraints)
- Idea: Terminate when any variable has no legal values
Constraint Propagation

- Forward checking propagates information from assigned to adjacent unassigned variables, but doesn't detect more distant failures:

- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- Constraint propagation repeatedly enforces constraints (locally)

Arc Consistency

- Simplest form of propagation makes each arc \textit{consistent}
 - \(X \rightarrow Y\) is consistent iff for every value \(x\) there is some allowed \(y\)

- If \(X\) loses a value, neighbors of \(X\) need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- What's the downside of arc consistency?
- Can be run as a preprocessor or after each assignment
Arc Consistency

function AC-3(\(csp\)) returns the CSP, possibly with reduced domains
inputs: \(csp\), a binary CSP with variables \(\{X_1, X_2, \ldots, X_n\}\)
local variables: \(queue\), a queue of arcs, initially all the arcs in \(csp\)
while \(queue\) is not empty do
 \((X_i, X_j)\) \(\leftarrow\) REMOVE-FIRST(\(queue\))
 if REMOVE-INCONSISTENT-VALUES(\(X_i, X_j\)) then
 for each \(X_k\) in NEIGHBORS[\(X_i\)] do
 add \((X_k, X_j)\) to \(queue\)

function REMOVE-INCONSISTENT-VALUES(\(X_i, X_j\)) returns true iff succeeds
removed \(\leftarrow\) false
for each \(x\) in DOMAIN[\(X_i\)] do
 if no value \(y\) in DOMAIN[\(X_j\)] allows \((x, y)\) to satisfy the constraint \(X_i \leftarrow X_j\) then
 delete \(x\) from DOMAIN[\(X_i\)];
 removed \(\leftarrow\) true
return removed

- Runtime: \(O(n^2d^2)\), can be reduced to \(O(n^2d^2)\)
- … but detecting all possible future problems is NP-hard – why?

Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)
Demo: Backtracking + AC