CS 188: Artificial Intelligence
Fall 2009

Lecture 4: Constraint Satisfaction
9/8/2009

Dan Klein – UC Berkeley
Multiple slides adapted from Stuart Russell or Andrew Moore

Announcements

- Project 1: Search is due Monday
 - Find partners at end of lecture, in front
- Written 1: Search and CSPs out soon
- Newsgroup: check it out

Today

- Search Conclusion
- Constraint Satisfaction Problems

A* Review

- A* uses both backward costs g and forward estimate h: $f(n) = g(n) + h(n)$
- A* tree search is optimal with admissible heuristics (optimistic future cost estimates)
- Heuristic design is key: relaxed problems can help

A* Graph Search Gone Wrong

Consistency

The story on Consistency:
- Definition:
 - $cost(A \text{ to } C) + h(C) \geq h(A)$
- Consequence in search tree:
 - Two nodes along a path: N_A, N_C
 - $g(N_A) = g(N_B) + cost(A \text{ to } C)$
 - $g(N_C) + h(C) \geq g(N_B) + h(A)$
- The f value along a path never decreases
- Non-decreasing f means you’re optimal to every state (not just goals)
Optimality Summary

- **Tree search:**
 - A* optimal if heuristic is admissible (and non-negative)
 - Uniform Cost Search is a special case (h = 0)

- **Graph search:**
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)

- In general, natural admissible heuristics tend to be consistent

- Remember, costs are always positive in search!

What is Search For?

- Models of the world: single agents, deterministic actions, fully observed state, discrete state space

- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics to guide, fringe to keep backups

- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems

Constraint Satisfaction Problems

- Standard search problems:
 - State is a "black box": arbitrary data structure
 - Goal test: any function over states
 - Successor function can be anything

- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

- Simple example of a formal representation language

- Allows useful general-purpose algorithms with more power than standard search algorithms

Example: N-Queens

- **Formulation 1:**
 - Variables: X_{ij}
 - Domains: $\{0, 1\}$
 - Constraints:
 \[
 \forall i, j, k \quad (X_{ij}, X_{ik}, X_{jk}) \in \{(0,0), (0,1), (1,0)\}
 \]

- **Formulation 1.5:**
 - Variables: Q_k
 - Domains: $\{11, 12, 13, \ldots, 21, \ldots, NN\}$
 - Constraints:
 \[
 \forall i, j \quad \text{non-threatening}(Q_i, Q_j)
 \]
 \[
 \forall i, j \quad (Q_i, Q_j) \in \{(11, 23), (11, 24), \ldots\}
 \]

 ... there's an even better way! What is it?
Example: N-Queens

- **Formulation 2:**
 - Variables: Q_k
 - Domains: $\{1, 2, 3, \ldots, N\}$
 - Constraints:
 - Implicit: $\forall i, j \text{ non-threatening}(Q_i, Q_j)$
 - Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$

Example: Map-Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domain: $D = \{\text{red, green, blue}\}$
- Constraints: adjacent regions must have different colors
 - $WA \neq NT$
 - $(WA, NT) \in \{(\text{red, green}), (\text{red, blue}), (\text{green, red})\}$
- Solutions are assignments satisfying all constraints, e.g.:
 - $WA = \text{red}, NT = \text{green}, Q = \text{red}$
 - $NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green}$

Example: Cryptarithmetic

- Variables (circles):
 - $F, T, U, W, R, O, X_1, X_2, X_3$
- Domains:
 - $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Constraints (boxes):
 - $OW + OW + OW + OW = T W O + U I + R O$
 - $O + O = R + 10 \cdot X_1$

Example: Sudoku

- Variables:
 - Each (open) square
 - Domains:
 - $\{1, 2, 3, \ldots, 9\}$
 - Constraints:
 - 9-way alikeff for each column
 - 9-way alikeff for each row
 - 9-way alikeff for each region

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra
- An early example of a computation posed as a CSP
- Look at all intersections
- Adjacent intersections impose constraints on each other
Waltz on Simple Scenes

- Assume all objects:
 - Have no shadows or cracks
 - Three-faced vertices
 - "General position": no junctions change with small movements of the eye.
- Then each line on image is one of the following:
 - Boundary line (edge of an object) (→) with right hand of arrow denoting "solid" and left hand denoting "space"
 - Interior convex edge (+)
 - Interior concave edge (-)

Legal Junctions

- Only certain junctions are physically possible
- How can we formulate a CSP to label an image?
- Variables: vertices
- Domains: junction labels
- Constraints: both ends of a line should have the same label

Varieties of CSPs

- Discrete Variables
 - Finite domains
 - Size d means $O(d^n)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable
 - Continuous variables
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods (see cs170 for a bit of this theory)

Varieties of Constraints

- Varieties of Constraints
 - Unary constraints involve a single variable (equiv. to shrinking domains):
 - $S \neq A$
 - Binary constraints involve pairs of variables:
 - $S \neq A$
 - Higher-order constraints involve 3 or more variables:
 - E.g., cryptarithmetic column constraints
 - Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We'll ignore these until we get to Bayes' nets)

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Floorplanning
- Fault diagnosis
- … lots more!

- Many real-world problems involve real-valued variables…

Standard Search Formulation

- Standard search formulation of CSPs (incremental)
- Let's start with the straightforward, dumb approach, then fix it
- States are defined by the values assigned so far
 - Initial state: the empty assignment, {};
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
- Simplest CSP ever: two bits, constrained to be equal
Search Methods

- What does BFS do?
- What does DFS do?
 - [demo]
- What’s the obvious problem here?
- What’s the slightly-less-obvious problem?

Backtracking Search

- Idea 1: Only consider a single variable at each point
 - Variable assignments are commutative, so fix ordering
 - i.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
 - How many leaves are there?
- Idea 2: Only allow legal assignments at each point
 - i.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to figure out whether a value is ok
 - “Incremental goal test”
- Depth-first search for CSPs with these two improvements is called backtracking search (useless name, really)
 - [DEMO]
- Backtracking search is the basic uninformed algorithm for CSPs
 - Can solve n-queens for n = 25

5 Minute Break

Backtracking Example

Backtracking Search

- What are the choice points?

Improving Backtracking

- General-purpose ideas can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
 - Can we take advantage of problem structure?
Minimum Remaining Values

- Minimum remaining values (MRV):
 - Choose the variable with the fewest legal values
- Why min rather than max?
- Also called “most constrained variable”
- “Fail-fast” ordering

Degree Heuristic

- Tie-breaker among MRV variables
- Degree heuristic:
 - Choose the variable participating in the most constraints on remaining variables
- Why most rather than fewest constraints?

Least Constraining Value

- Given a choice of variable:
 - Choose the least constraining value
 - The one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this!
- Why least rather than most?
- Combining these heuristics makes 1000 queens feasible

Forward Checking

- Idea: Keep track of remaining legal values for unassigned variables (using immediate constraints)
- Idea: Terminate when any variable has no legal values

Constraint Propagation

- Forward checking propagates information from assigned to adjacent unassigned variables, but doesn’t detect more distant failures:
 - NT and SA cannot both be blue!
 - Why didn’t we detect this yet?
 - Constraint propagation repeatedly enforces constraints (locally)

Arc Consistency

- Simplest form of propagation makes each arc consistent
 - $X \rightarrow Y$ is consistent if for every value x there is some allowed y
- If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- What’s the downside of arc consistency?
- Can be run as a preprocessor or after each assignment
Arc Consistency

Function: `AC-C(R)` returns the CSP, possibly with reduced domains
Inputs: `R`, a binary CSP with variables \(X_1, X_2, \ldots, X_n \)
Local variables: `q`, a queue of arcs, initially all the arcs in `R`
while `q` is not empty do
 \((X_i, X_j) \) ← RemoveFirst(`q`)
 if RemoveInconsistentValue(`X_i`, `X_j`) then
 for each \(X_k \) in Neighborhood(`X_i`) do
 add \((X_k, X_i) \) to `q`

Function: `RemoveInconsistentValue(`X_i`, `X_j`)` returns true if succeeds
 removed ← false
 for each \(c \) in Domain(`X_i`) do
 if no value \(c \) in Domain(`X_j`) allows \(c \) to satisfy the constraint \(X_i \rightarrow X_j \)
 then remove \(c \) from Domain(`X_i`). removed ← true
 return `removed`

- Runtime: \(O(n^2d^2) \), can be reduced to \(O(n^2d) \)
- ... but detecting all possible future problems is NP-hard – why?
 [demo: arc consistency animation]

Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

Demo: Backtracking + AC