Announcements

- None yet
Today

- Efficient Solution of CSPs
- Local Search

Reminder: CSPs

- CSPs:
 - Variables
 - Domains
 - Constraints
 - Implicit (provide code to compute)
 - Explicit (provide a subset of the possible tuples)

- Unary Constraints
- Binary Constraints
- N-ary Constraints
Backtracking Search

```python
function BACKTRACKING_SEARCH(esp) returns solution/failure
    return RECURSIVE-BACKTRACKING({}, esp)

function RECURSIVE-BACKTRACKING(assignment, esp) returns solution/failure
    if assignment is complete then return assignment
    var ← SELECT-UNASSIGNED-VARIABLE(Variables[esp], assignment, esp)
    for each value in ORDER-DOMAIN-VALUES(var, assignment, esp) do
        if value is consistent with assignment given CONSTRAINTS[esp] then
            add \{var = value\} to assignment
            result ← RECURSIVE-BACKTRACKING(assignment, esp)
            if result \neq failure then return result
            remove \{var = value\} from assignment
    return failure
```

- Backtracking = DFS + var-ordering + fail-on-violation
- What are the choice points?

[demo: backtracking]
Improving Backtracking

- General-purpose ideas give huge gains in speed

- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?

- Filtering: Can we detect inevitable failure early?

- Structure: Can we exploit the problem structure?

Filtering: Forward Checking

- Idea: Keep track of remaining legal values for unassigned variables (using immediate constraints)
- Idea: Terminate when any variable has no legal values
Filtering: Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

 - NT and SA cannot both be blue!
 - Why didn't we detect this yet?
 - Constraint propagation propagates from constraint to constraint

Consistency of An Arc

- An arc $X \rightarrow Y$ is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint

 - Forward checking = Enforcing consistency of each arc pointing to the new assignment
Arc Consistency of a CSP

- A simple form of propagation makes sure all arcs are consistent:

 ![Diagram](image.png)

 - If X loses a value, neighbors of X need to be rechecked!
 - Arc consistency detects failure earlier than forward checking
 - What's the downside of enforcing arc consistency?
 - Can be run as a preprocessor or after each assignment

Arc Consistency

```python
function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
local variables: queue, a queue of arcs, initially all the arcs in csp
while queue is not empty do
    \((X_i, X_j)\) = REMOVE-FIRST(queue)
    if REMOVE-INCONSISTENT-VALUES(X_i, X_j) then
        for each \(X_k\) in NEIGHBORS[X_i] do
            add \((X_k, X_j)\) to queue

function REMOVE-INCONSISTENT-VALUES(X_i, X_j) returns true iff succeeds
removed = false
for each \(x\) in DOMAIN[X_i] do
    if no value \(y\) in DOMAIN[X_j] allows \((x, y)\) to satisfy the constraint \(X_i \rightarrow X_j\)
    then delete \(x\) from DOMAIN[X_i]; removed = true
return removed
```

- Runtime: \(O(n^2d^3)\), can be reduced to \(O(n^2d^2)\)
- … but detecting all possible future problems is NP-hard – why?
Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node's domain has a value which meets that node’s unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.

- Higher k more expensive to compute
- (You need to know the k=2 algorithm)
Strong K-Consistency

- Strong k-consistency: also k-1, k-2, … 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - ...
- Lots of middle ground between arc consistency and n-consistency! (e.g. path consistency)

Ordering: Minimum Remaining Values

- Minimum remaining values (MRV):
 - Choose the variable with the fewest legal values
- Why min rather than max?
- Also called “most constrained variable”
- “Fail-fast” ordering
Ordering: Least Constraining Value

- Given a choice of variable:
 - Choose the least constraining value
 - The one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this!

- Why least rather than most?

- Combining these heuristics makes 1000 queens feasible

- … but how do we know which is the MRV / LCV choice?

Problem Structure

- Tasmania and mainland are independent subproblems

- Identifiable as connected components of constraint graph

- Suppose each subproblem has c variables out of n total
 - Worst-case solution cost is \(O((n/c)(d^c)) \), linear in n
 - E.g., \(n = 80, d = 2, c = 20 \)
 - \(2^{80} = 4 \text{ billion years at } 10 \text{ million nodes/sec} \)
 - \((4)(2^{20}) = 0.4 \text{ seconds at } 10 \text{ million nodes/sec} \)
Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n \, d^2)$ time
 - Compare to general CSPs, where worst-case time is $O(d^n)$
 - This property also applies to probabilistic reasoning (later): an important example of the relation between syntactic restrictions and the complexity of reasoning.

Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering

- For $i = n : 2$, apply RemoveInconsistent(Parent(X_i),X_i)
- For $i = 1 : n$, assign X_i consistently with Parent(X_i)
- Runtime: $O(n \, d^2)$ (why?)
Tree-Structured CSPs

- Why does this work?
- Claim: After each node is processed leftward, all nodes to the right can be assigned in any way consistent with their parent.
- Proof: Induction on position

- Why doesn’t this algorithm work with loops?
- Note: we’ll see this basic idea again with Bayes’ nets

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors’ domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime \(O((d^2)(n-c) d^2) \), very fast for small c
Tree Decompositions*

- Create a tree-structured graph of overlapping subproblems, each is a mega-variable
- Solve each subproblem to enforce local constraints
- Solve the CSP over subproblem mega-variables using our efficient tree-structured CSP algorithm

\[
\begin{align*}
&\{(WA=r, SA=g, NT=b), \\
&(WA=b, SA=r, NT=g), \\
&\ldots\} \\
&\{(NT=r, SA=g, Q=b), \\
&(NT=b, SA=g, Q=r), \\
&\ldots\} \\
&\text{Agree: } (M_1, M_2) \in \{(WA=g, SA=g, NT=g), \\
&(NT=g, SA=g, Q=g), \\
&\ldots\}
\end{align*}
\]

Iterative Algorithms for CSPs

- Local search methods typically work with “complete” states, i.e., all variables assigned

- To apply to CSPs:
 - Start with some assignment with unsatisfied constraints
 - Operators \textit{reassign} variable values
 - No fringe! Live on the edge.

- Variable selection: randomly select any conflicted variable

- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hill climb with \(h(n) = \text{total number of violated constraints}\)
Example: 4-Queens

- States: 4 queens in 4 columns ($4^4 = 256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: $c(n) =$ number of attacks

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[R = \frac{\text{number of constraints}}{\text{number of variables}} \]
Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
- Backtracking = depth-first search with one legal variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- Constraint graphs allow for analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice