CS 188: Artificial Intelligence
Fall 2009

Lecture 5: CSPs II
9/10/2008

Dan Klein – UC Berkeley
Multiple slides over the course adapted from either Stuart Russell or Andrew Moore

Announcements
- None yet

Today
- Efficient Solution of CSPs
- Local Search

Reminder: CSPs
- CSPs:
 - Variables
 - Domains
 - Constraints
 - Implicit (provide code to compute)
 - Explicit (provide a subset of the possible tuples)
 - Unary Constraints
 - Binary Constraints
 - N-ary Constraints

DFS Example

Backtracking Search

[function: BACKTRACKING-SEARCH]
[return: solution, failure]
[function: RECURSIVE-BACKTRACKING]
[for each value in ORDERED-DOMAIN VALUES(var, assignment, cap)]
[if value = selected with assignment then CONSTRAINTS[cap] then add (var, value) to assignment
 return RECURSIVE-BACKTRACKING(assignment, cap)
if not value then return value
remove (var, value) from assignment
return failure]

- Backtracking = DFS + var-ordering + fail-on-violation
- What are the choice points?
Improving Backtracking

- General-purpose ideas give huge gains in speed
- **Ordering:**
 - Which variable should be assigned next?
 - In what order should its values be tried?
- **Filtering:** Can we detect inevitable failure early?
- **Structure:** Can we exploit the problem structure?

Filtering: Forward Checking

- Idea: Keep track of remaining legal values for unassigned variables (using immediate constraints)
- Idea: Terminate when any variable has no legal values

Filtering: Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn’t provide early detection for all failures:
 - WA: [] [] [] [] [] []
 - NT: [] [] [] [] [] []
 - Q: [] [] [] [] [] []
 - NSW: [] [] [] [] [] []
 - V: [] [] [] [] [] []
 - SA: [] [] [] [] [] []
 - T: [] [] [] [] [] []

- NT and SA cannot both be blue!
- Why didn’t we detect this yet?
- Constraint propagation propagates from constraint to constraint

Consistency of An Arc

- An arc $X \rightarrow Y$ is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint:

Arc Consistency of a CSP

- A simple form of propagation makes sure all arcs are consistent:

Arc Consistency

- Function $AC3(csp)$ returns the CSP, possibly with reduced domains
- Inputs: csp, a binary CSP with variables X_1, X_2, \ldots, X_n
- Local variables: $\text{values}[x]$, a queue of arcs initially all the arcs in csp
- While queue is not empty do
 - $(X_i, X_j) \leftarrow \text{RemoveFromQueue}()$
 - if REMOVE-INCIDENT-VALUES(X_i, X_j) then
 - for each X_k in Neighbor(X_i) do
 - $\text{RemoveFromQueue}()$

- Function $\text{Remove-incident-values}(X_i, X_j)$ returns true iff succeeds

- If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- What’s the downside of enforcing arc consistency?
- Can be run as a preprocessor or after each assignment

- Runtime: $O(n^2d^2)$, can be reduced to $O(n^2d^2)$
- ... but detecting all possible future problems is NP-hard — why?
Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

What went wrong here?

K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node's domain has a value which meets that node's unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the k

- Higher k more expensive to compute
 - (You need to know the k=2 algorithm)

Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - ...
 - Lots of middle ground between arc consistency and n-consistency! (e.g. path consistency)

Ordering: Minimum Remaining Values

- Minimum remaining values (MRV):
 - Choose the variable with the fewest legal values

- Why min rather than max?
- Also called "most constrained variable"
- "Fail-fast" ordering

Ordering: Least Constraining Value

- Given a choice of variable:
 - Choose the least constraining value
 - The one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this!

- Why least rather than most?
- Combining these heuristics makes 1000 queens feasible
- ... but how do we know which is the MRV / LCV choice?

Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has c variables out of n total
 - Worst-case solution cost is O((n/c)(d^c)), linear in n
 - E.g., n = 80, d = 2, c = 20
 - 2^20 = n billion years at 10 million nodes/sec
 - 4(2^20) = 0.4 seconds at 10 million nodes/sec
Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n d^2)$ time
 - Compare to general CSPs, where worst-case time is $O(d^n)$
- This property also applies to probabilistic reasoning (later): an important example of the relation between syntactic restrictions and the complexity of reasoning.

Choose a variable as root, order variables from root to leaves such that every node’s parent precedes it in the ordering

For $i = n : 2$, apply RemoveInconsistent($\text{Parent}(X_i), X_i$)

For $i = 1 : n$, assign X_i consistently with $\text{Parent}(X_i)$

Runtime: $O(n d^2)$ (why?)

Why does this work?
- Claim: After each node is processed leftward, all nodes to the right can be assigned in any way consistent with their parent.
- Proof: Induction on position

Why doesn’t this algorithm work with loops?
- Note: we’ll see this basic idea again with Bayes’ nets

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors’ domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O((d^c) (n-c) d^2)$, very fast for small c

Iterative Algorithms for CSPs

- Local search methods typically work with “complete” states, i.e., all variables assigned
- To apply to CSPs:
 - Start with some assignment with unsatisfied constraints
 - Operators reassign variable values
 - No fringe! Live on the edge.
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hill climb with $h(n) = \text{total number of violated constraints}$

Tree Decompositions*

- Create a tree-structured graph of overlapping subproblems, each is a mega-variable
- Solve each subproblem to enforce local constraints
- Solve the CSP over subproblem mega-variables using our efficient tree-structured CSP algorithm
Example: 4-Queens

- States: 4 queens in 4 columns ($4^4 = 256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: $c(n) =$ number of attacks

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $n = 10,000,000$)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[R = \frac{\text{number of constraints}}{\text{number of variables}} \]

Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
 - Backtracking = depth-first search with one legal variable assigned per node
 - Variable ordering and value selection heuristics help significantly
 - Forward checking prevents assignments that guarantee later failure
 - Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
 - Constraint graphs allow for analysis of problem structure
 - Tree-structured CSPs can be solved in linear time
 - Iterative min-conflicts is usually effective in practice