Expectimax for Pacman

Results from playing 5 games

<table>
<thead>
<tr>
<th></th>
<th>Minimizing Ghost</th>
<th>Random Ghost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimax Pacman</td>
<td>Won 5/5</td>
<td>Won 5/5</td>
</tr>
<tr>
<td></td>
<td>Avg. Score: 493</td>
<td>Avg. Score: 483</td>
</tr>
<tr>
<td>Expectimax Pacman</td>
<td>Won 1/5</td>
<td>Won 5/5</td>
</tr>
<tr>
<td></td>
<td>Avg. Score: -303</td>
<td>Avg. Score: 503</td>
</tr>
</tbody>
</table>

Pacman used depth 4 search with an eval function that avoids trouble. Ghost used depth 2 search with an eval function that seeks Pacman.

Expectimax Search

- Chance nodes
 - Chance nodes are like min nodes, except the outcome is uncertain
 - Calculate expected utilities
 - Chance nodes average successor values (weighted)
- Each chance node has a probability distribution over its outcomes (called a model)
 - For now, assume we're given the model
- Utilities for terminal states
 - Static evaluation functions give us limited-depth search

Expectimax Quantities

- Estimate of true expectimax value (which would require a lot of work to compute)

Expectimax Pruning?

- Evaluation functions quickly return an estimate for a node’s true value (which value, expectimax or minimax?)
- For minimax, evaluation function scale doesn’t matter
 - We just want better states to have higher evaluations (get the ordering right)
 - We call this insensitivity to monotonic transformations
- For expectimax, we need magnitudes to be meaningful

Expectimax Evaluation
Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
 - Environment is an extra player that moves after each agent
 - Chance nodes take expectations, otherwise like minimax

```
ExpectMinimax-Value(state):
    if state is a MAX node then
        return the highest ExpectMinimax-Value of Successors(state)
    if state is a MIN node then
        return the lowest ExpectMinimax-Value of Successors(state)
    if state is a chance node then
        return average of ExpectMinimax-Value of Successors(state)
```

Stochastic Two-Player

- Dice rolls increase b: 21 possible rolls with 2 dice
 - Backgammon = 20 legal moves
 - Depth 2 = 20 x (21 x 20)^2 = 1.2 x 10^9
 - As depth increases, probability of reaching a given search node shrinks
 - So usefulness of search is diminished
 - So limiting depth is less damaging
 - But pruning is trickier...
 - TDGammon uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play
 - 1st AI world champion in any game!

Multi-Agent Utilities

- Similar to minimax:
 - Terminals have utility tuples
 - Node values are also utility tuples
 - Each player maximizes its own utility
 - Can give rise to cooperation and competition dynamically...

Maximum Expected Utility

- Principle of maximum expected utility:
 - A rational agent should chose the action which maximizes its expected utility, given its knowledge

- Questions:
 - Where do utilities come from?
 - How do we know such utilities even exist?
 - Why are we taking expectations of utilities (not, e.g. minimax)?
 - What if our behavior can’t be described by utilities?

Utilities: Unknown Outcomes

- Going to airport from home
 - Take freeway
 - Clear, 10 min
 - Traffic, 50 min
 - Take surface streets
 - Clear, 20 min

Preferences

- An agent chooses among:
 - Prizes: A, B, etc.
 - Lotteries: situations with uncertain prizes
 - \(L = [p, A; (1 - p), B] \)

- Notation:
 - \(A \succ B \) A preferred over B
 - \(A \sim B \) indifference between A and B
 - \(A \succeq B \) B not preferred over A
Rational Preferences

- We want some constraints on preferences before we call them rational.

\((A > B) \land (B > C) \Rightarrow (A > C) \)

- For example: an agent with intransitive preferences can be induced to give away all of its money:
 - If \(B > C \), then an agent with \(C \) would pay (say) 1 cent to get \(B \)
 - If \(A > B \), then an agent with \(B \) would pay (say) 1 cent to get \(A \)
 - If \(C > A \), then an agent with \(A \) would pay (say) 1 cent to get \(C \)

Preferences of a rational agent must obey constraints.
- The axioms of rationality:
 - Ordering
 \((A > B) \lor (B > A) \lor (A \sim B) \)
 - Transitivity
 \((A > B) \land (B > C) \Rightarrow (A > C) \)
 - Continuity
 \(A > B > C \Rightarrow \exists p \in [0,1] \text{ such that } A \sim [p \cdot A; 1-p \cdot C] \sim B \)
 - Substitutability
 \(A \sim B \Rightarrow [p \cdot A; 1-p \cdot C] \sim [p \cdot B; 1-p \cdot C] \)
 - Monotonicity
 \(A > B \Rightarrow (p > q \Rightarrow [p \cdot A; 1-p \cdot B] > [q \cdot A; 1-q \cdot B]) \)
- Theorem: Rational preferences imply behavior describable as maximization of expected utility.

MEU Principle

- Theorem:
 - [Ramsey, 1931; von Neumann & Morgenstern, 1944]
 - Given any preferences satisfying these constraints, there exists a real-valued function \(U \) such that:
 \[
 U(A) \geq U(B) \Leftrightarrow A \succeq B \\
 U([p_1, S_1; \ldots; p_n, S_n]) = \sum_i p_i U(S_i)
 \]

- Maximum expected likelihood (MEU) principle:
 - Choose the action that maximizes expected utility.
 - Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities.
 - E.g., a lookup table for perfect tic-tac-toe, reflex vacuum cleaner.

Utility Scales

- Normalized utilities: \(u_0 = 1.0, u_1 = 0.0 \)
- Micromorts: one-millionth chance of death, useful for paying to reduce product risks, etc.
- QALYs: quality-adjusted life years, useful for medical decisions involving substantial risk.
- Note: behavior is invariant under positive linear transformation:
 \[
 U'(x) = k_1 U(x) + k_2 \quad \text{where } k_1 > 0
 \]
 - With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes.

Human Utilities

- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment of human utilities:
 - Compare a state \(A \) to a standard lottery \(L_0 \) between
 - ‘best possible prize’ \(u \), with probability \(p \)
 - ‘worst possible catastrophe’ \(u \) with probability 1-p
 - Adjust lottery probability \(p \) until \(A \sim L_0 \)
 - Resulting \(p \) is a utility in \([0,1]\)

 Pay \$30 ~ continue as before
 Instant death

Money

- Money does not behave as a utility function, but we can talk about the utility of having money (or being in debt).
- Given a lottery \(L = [p, X; 1-p, Y] \)
 - The expected monetary value \(EMV(L) = p \cdot X + (1-p) \cdot Y \)
 - \(U(L) = p \cdot U(X) + (1-p) \cdot U(Y) \)
 - Typically, \(U(L) < U] EMV(L) \) why?
 - In this sense, people are risk-averse.
 - When deep in debt, we are risk-prone.
- Utility curve: for what probability \(p \) am I indifferent between:
 - Some sure outcome \(x \)
 - A lottery \([p, X; 1-p, Y], M \) large.
Example: Insurance

- Consider the lottery \([0.5, $1000; 0.5, $0]\)
 - What is its expected monetary value? ($500)
 - What is its certainty equivalent?
 - Monetary value acceptable in lieu of lottery
 - $400 for most people
 - Difference of $100 is the insurance premium
 - There's an insurance industry because people will pay to reduce their risk
 - If everyone were risk-neutral, no insurance needed!

Example: Insurance

- Because people ascribe different utilities to different amounts of money, insurance agreements can increase both parties' expected utility

 You own a car. Your lottery:
 \(L_Y = [0.8, $0; 0.2, -$200]\)
 i.e., 20% chance of crashing
 You do not want -$200!
 \(U_Y(L_Y) = 0.2*U_Y(-$200) = -200\)
 \(U_Y(-$50) = -150\)

Example: Insurance

- Because people ascribe different utilities to different amounts of money, insurance agreements can increase both parties' expected utility

 Insurance company buys risk:
 \(L_I = [0.8, $50; 0.2, -$150]\)
 i.e., $50 revenue + your \(L_Y\)
 Insurer is risk-neutral:
 \(U_I(L_I) = U(0.8*50 + 0.2*(-150))\)
 \(= U($10) > U($0)\)

Example: Human Rationality?

- Famous example of Allais (1953)
 - A: \([0.8, $4k; 0.2, $0]\)
 - B: \([1.0, $3k; 0.0, $0]\)
 - C: \([0.2, $4k; 0.8, $0]\)
 - D: \([0.25, $3k; 0.75, $0]\)

 Most people prefer B > A, C > D
 But if \(U($0) = 0\), then
 - B > A \(\Rightarrow U($3k) > 0.8 U($4k)\)
 - C > D \(\Rightarrow 0.8 U($4k) > U($3k)\)

Reinforcement Learning

- Basic idea:
 - Receive feedback in the form of rewards
 - Agent's utility is defined by the reward function
 - Must learn to act so as to maximize expected rewards
 - Change the rewards, change the learned behavior

- Examples:
 - Playing a game, reward at the end for winning / losing
 - Vacuuming a house, reward for each piece of dirt picked up
 - Automated taxi, reward for each passenger delivered

- First: Need to master MDPs

Grid World

- The agent lives in a grid
- Walls block the agent's path
- The agent's actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put

- Big rewards come at the end
Markov Decision Processes

- An MDP is defined by:
 - A set of states \(s \in S \)
 - A set of actions \(a \in A \)
 - A transition function \(T(s,a,s') \)
 - Prob that \(a \) from \(s \) leads to \(s' \)
 - i.e., \(P(s' | s, a) \)
 - Also called the model
 - A reward function \(R(s, a, s') \)
 - Sometimes just \(R(s) \) or \(R(s') \)
 - A start state (or distribution)
 - Maybe a terminal state

- MDPs are a family of non-deterministic search problems
 - Reinforcement learning: MDPs where we don’t know the transition or reward functions

Solving MDPs

- In deterministic single-agent search problem, want an optimal plan, or sequence of actions, from start to a goal
- In an MDP, we want an optimal policy \(\pi^* : S \rightarrow A \)
 - A policy \(\pi \) gives an action for each state
 - An optimal policy maximizes expected utility if followed
 - Defines a reflex agent

Example Optimal Policies

- \(R(s) = -0.03 \)
- \(R(s) = -0.01 \)
- \(R(s) = -0.4 \)
- \(R(s) = -2.0 \)