CS 188: Artificial Intelligence
Fall 2009

Lecture 9: MDPs
9/24/2009

Dan Klein – UC Berkeley
Many slides over the course adapted from either Stuart Russell or Andrew Moore

Announcements

- Assignments
 - W1 due today (drop box in 283 Soda or after lecture)
 - P2 due on 9/30 (Wednesday)
 - P3 out now, due 10/12

- Readings:
 - For MDPs / reinforcement learning, we’re using an online reading
 - Different treatment and notation than the R&N book, beware!
 - Lecture version is the standard for this class

- Contest is live!
Reinforcement Learning

- **Basic idea:**
 - Receive feedback in the form of rewards
 - Agent’s utility is defined by the reward function
 - Must learn to act so as to maximize expected rewards

Grid World

- The agent lives in a grid
- Walls block the agent’s path
- The agent’s actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- Small “living” reward each step
- Big rewards come at the end
- Goal: maximize sum of rewards*

*Note: Grid world is a classic example in reinforcement learning, where the agent navigates a grid and receives rewards for reaching certain positions.
Markov Decision Processes

- An MDP is defined by:
 - A set of states \(s \in S \)
 - A set of actions \(a \in A \)
 - A transition function \(T(s,a,s') \)
 - Prob that \(a \) from \(s \) leads to \(s' \)
 - i.e., \(P(s' | s,a) \)
 - Also called the model
 - A reward function \(R(s,a,s') \)
 - Sometimes just \(R(s) \) or \(R(s') \)
 - A start state (or distribution)
 - Maybe a terminal state

- MDPs are a family of non-deterministic search problems
 - Reinforcement learning: MDPs where we don’t know the transition or reward functions

What is Markov about MDPs?

- Andrey Markov (1856-1922)

- “Markov” generally means that given the present state, the future and the past are independent

- For Markov decision processes, “Markov” means:

\[
P(S_{t+1} = s'|S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \ldots S_0 = s_0) = P(S_{t+1} = s'|S_t = s_t, A_t = a_t)
\]
Solving MDPs

- In deterministic single-agent search problems, want an optimal plan, or sequence of actions, from start to a goal.
- In an MDP, we want an optimal policy \(\pi^* : S \rightarrow A \):
 - A policy \(\pi \) gives an action for each state.
 - An optimal policy maximizes expected utility if followed.
 - Defines a reflex agent.

Example Optimal Policies:

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Reward</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R(s) = -0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R(s) = -0.03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R(s) = -0.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R(s) = -2.0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: High-Low

- Three card types: 2, 3, 4
- Infinite deck, twice as many 2's
- Start with 3 showing
- After each card, you say “high” or “low”
- New card is flipped
- If you’re right, you win the points shown on the new card
- Ties are no-ops
- If you’re wrong, game ends

- Differences from expectimax:
 - #1: get rewards as you go
 - #2: you might play forever!

High-Low as an MDP

- States: 2, 3, 4, done
- Actions: High, Low
- Model: $T(s, a, s')$:
 - $P(s'=4 \mid 4, \text{Low}) = 1/4$
 - $P(s'=3 \mid 4, \text{Low}) = 1/4$
 - $P(s'=2 \mid 4, \text{Low}) = 1/2$
 - $P(s'\equiv\text{done} \mid 4, \text{Low}) = 0$
 - $P(s'=4 \mid 4, \text{High}) = 1/4$
 - $P(s'=3 \mid 4, \text{High}) = 0$
 - $P(s'=2 \mid 4, \text{High}) = 0$
 - $P(s'\equiv\text{done} \mid 4, \text{High}) = 3/4$
 - ...
- Rewards: $R(s, a, s')$:
 - Number shown on s' if $s \neq s'$
 - 0 otherwise
- Start: 3
Example: High-Low

Each MDP state gives an expectimax-like search tree

- (s, a) is a q-state
- (s, a, s') called a transition
 \[T(s, a, s') = P(s'|s, a) \]
 \[R(s, a, s') \]
Utilities of Sequences

- In order to formalize optimality of a policy, need to understand utilities of sequences of rewards
- Typically consider stationary preferences:
 \[[r, r_0, r_1, r_2, \ldots] \succ [r', r'_0, r'_1, r'_2, \ldots] \]
 \[[r_0, r_1, r_2, \ldots] \succ [r'_0, r'_1, r'_2, \ldots] \]

- Theorem: only two ways to define stationary utilities
 - Additive utility:
 \[U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots \]
 - Discounted utility:
 \[U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots \]

Infinite Utilities?!

- Problem: infinite state sequences have infinite rewards
- Solutions:
 - Finite horizon:
 - Terminate episodes after a fixed \(T \) steps (e.g., life)
 - Gives nonstationary policies (\(\pi \) depends on time left)
 - Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like “done” for High-Low)
 - Discounting: for \(0 < \gamma < 1 \)
 \[U([r_0, \ldots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \leq R_{\text{max}}/(1 - \gamma) \]
 - Smaller \(\gamma \) means smaller “horizon” – shorter term focus
Discounting

- Typically discount rewards by $\gamma < 1$ each time step
 - Sooner rewards have higher utility than later rewards
 - Also helps the algorithms converge

Recap: Defining MDPs

- Markov decision processes:
 - States S
 - Start state s_0
 - Actions A
 - Transitions $P(s'|s,a)$ (or $T(s,a,s')$)
 - Rewards $R(s,a,s')$ (and discount γ)

- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility (or return) = sum of discounted rewards
Optimal Utilities

- Fundamental operation: compute the values (optimal expectimax utilities) of states s.
- Why? Optimal values define optimal policies!
- Define the value of a state s:
 \[V^*(s) = \text{expected utility starting in } s \text{ and acting optimally} \]
- Define the value of a q-state (s,a):
 \[Q^*(s,a) = \text{expected utility starting in } s, \text{ taking action } a \text{ and thereafter acting optimally} \]
- Define the optimal policy:
 \[\pi^*(s) = \text{optimal action from state } s \]

The Bellman Equations

- Definition of "optimal utility" leads to a simple one-step lookahead relationship amongst optimal utility values:
 \[\text{Optimal rewards} = \text{maximize over first action and then follow optimal policy} \]
- Formally:
 \[
 V^*(s) = \max_a Q^*(s, a) \\
 Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \\
 V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]
 \]
Solving MDPs

- We want to find the optimal policy π^*

- Proposal 1: modified expectimax search, starting from each state s:

 $$\pi^*(s) = \arg \max_a Q^*(s, a)$$

 $$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

 $$V^*(s) = \max_a Q^*(s, a)$$

Why Not Search Trees?

- Why not solve with expectimax?

- Problems:
 - This tree is usually infinite (why?)
 - Same states appear over and over (why?)
 - We would search once per state (why?)

- Idea: Value iteration
 - Compute optimal values for all states all at once using successive approximations
 - Will be a bottom-up dynamic program similar in cost to memoization
 - Do all planning offline, no replanning needed!
Value Estimates

- Calculate estimates $V_k^*(s)$
 - Not the optimal value of s!
 - The optimal value considering only next k time steps (k rewards)
 - As $k \to \infty$, it approaches the optimal value
- Why:
 - If discounting, distant rewards become negligible
 - If terminal states reachable from everywhere, fraction of episodes not ending becomes negligible
 - Otherwise, can get infinite expected utility and then this approach actually won’t work

Value Iteration

- Idea:
 - Start with $V_0^*(s) = 0$, which we know is right (why?)
 - Given V_i^*, calculate the values for all states for depth $i+1$:
 $$V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$
 - This is called a value update or Bellman update
 - Repeat until convergence
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do
Example: Bellman Updates

\[V_{i+1}(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_{i}(s') \right] \]

\[V_2((3,3)) = \sum_{s'} T((3,3), \text{right}, s') \left[R((3,3)) + 0.9 V_1(s') \right] \]

\[= 0.9 \left[0.8 \cdot 1 + 0.1 \cdot 0 + 0.1 \cdot 0 \right] \]

Example: Value Iteration

- Information propagates outward from terminal states and eventually all states have correct value estimates

[DEMO]
Convergence*

- Define the max-norm: \(|U| = \max_s |U(s)| \)

- Theorem: For any two approximations \(U \) and \(V \)
 \[
 \|U^{t+1} - V^{t+1}\| \leq \gamma \|U^t - V^t\|
 \]
 - I.e. any distinct approximations must get closer to each other, so, in particular, any approximation must get closer to the true \(U \) and value iteration converges to a unique, stable, optimal solution

- Theorem:
 \[
 \|U^{t+1} - U^t\| < \epsilon, \implies \|U^{t+1} - U\| < 2\epsilon/(1 - \gamma)
 \]
 - I.e. once the change in our approximation is small, it must also be close to correct

Practice: Computing Actions

- Which action should we chose from state \(s \):
 - Given optimal values \(V \)?
 \[
 \arg\max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]
 \]
 - Given optimal q-values \(Q \)?
 \[
 \arg\max_a Q^*(s, a)
 \]
 - Lesson: actions are easier to select from Q’s!

[DEMO – Grid Policies]
Utilities for Fixed Policies

- Another basic operation: compute the utility of a state s under a fix (general non-optimal) policy.
- Define the utility of a state s, under a fixed policy π:
 \[V^\pi(s) = \text{expected total discounted rewards (return) starting in } s \text{ and following } \pi \]
- Recursive relation (one-step look-ahead / Bellman equation):
 \[V^\pi(s) = \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V^\pi(s')] \]

Policy Evaluation

- How do we calculate the V’s for a fixed policy?
- Idea one: modify Bellman updates
 \[V_0^\pi(s) = 0 \]
 \[V_{i+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_i^\pi(s')] \]
- Idea two: it’s just a linear system, solve with Matlab (or whatever)
Policy Iteration

- Problem with value iteration:
 - Considering all actions each iteration is slow: takes $|A|$ times longer than policy evaluation
 - But policy doesn’t change each iteration, time wasted

- Alternative to value iteration:
 - **Step 1: Policy evaluation**: calculate utilities for a fixed policy (not optimal utilities!) until convergence (fast)
 - **Step 2: Policy improvement**: update policy using one-step lookahead with resulting converged (but not optimal!) utilities (slow but infrequent)
 - Repeat steps until policy converges

- This is policy iteration
 - It’s still optimal!
 - Can converge faster under some conditions

Policy Iteration

- **Policy evaluation**: with fixed current policy π, find values with simplified Bellman updates:
 - Iterate until values converge

 $$ V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V_i^{\pi_k}(s') \right] $$

- **Policy improvement**: with fixed utilities, find the best action according to one-step look-ahead

 $$ \pi_{k+1}(s) = \arg \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_k}(s') \right] $$
Comparison

- **In value iteration:**
 - Every pass (or "backup") updates both utilities (explicitly, based on current utilities) and policy (possibly implicitly, based on current policy)

- **In policy iteration:**
 - Several passes to update utilities with frozen policy
 - Occasional passes to update policies

- **Hybrid approaches (asynchronous policy iteration):**
 - Any sequences of partial updates to either policy entries or utilities will converge if every state is visited infinitely often