Reinforcement Learning

- **Basic idea:**
 - Receive feedback in the form of rewards
 - Agent's utility is defined by the reward function
 - Must learn to act so as to maximize expected rewards

Grid World

- The agent lives in a grid
- Walls block the agent's path
- The agent's actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
- If there is a wall in the direction the agent would have been taken, the agent stays put
- Small "living" reward each step
- Big rewards come at the end
- Goal: maximize sum of rewards

Markov Decision Processes

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition function $T(s, a, s')$
 - Prob that a from s leads to s'
 - i.e., $P(s' | s, a)$
 - Also called the model
 - A reward function $R(s, a, s')$
 - Sometimes just $R(s)$ or $R(s')$
 - A start state (or distribution)
 - Maybe a terminal state

- MDPs are a family of non-deterministic search problems
 - Reinforcement learning: MDPs where we don't know the transition or reward functions

What is Markov about MDPs?

- Andrey Markov (1856-1922)
- "Markov" generally means that given the present state, the future and the past are independent

For Markov decision processes, "Markov" means:

$$P(S_{t+1} = s' | S_t = s, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1} = a_{t-1}, \ldots, S_0 = s_0) = P(S_{t+1} = s' | S_t = s, A_t = a_t)$$
Solving MDPs

- In deterministic single-agent search problems, want an optimal plan, or sequence of actions, from start to a goal.
- In an MDP, we want an optimal policy \(\pi^*: S \rightarrow A \).
 - A policy \(\pi \) gives an action for each state.
 - An optimal policy maximizes expected utility if followed.
 - Defines a reflex agent.

Example: Optimal Policies

- Optimal policy when \(R(s, a, s') = -0.03 \) for all non-terminals \(s \).

High-Low as an MDP

- States: 2, 3, 4, done
- Actions: High, Low
- Model: \(T(s, a, s') \):
 - \(P(s'=4 \mid 4, Low) = 1/4 \)
 - \(P(s'=3 \mid 4, Low) = 1/4 \)
 - \(P(s'=2 \mid 4, Low) = 1/2 \)
 - \(P(s'=done \mid 4, Low) = 0 \)
 - \(P(s'=4 \mid 4, High) = 0 \)
 - \(P(s'=3 \mid 4, High) = 0 \)
 - \(P(s'=2 \mid 4, High) = 3/4 \)
 - \(P(s'=done \mid 4, High) = 0 \)
- Rewards: \(R(s, a, s') \):
 - Number shown on \(s' \) if \(s \neq s' \)
 - 0 otherwise
- Start: 3

Example: High-Low

- Three card types: 2, 3, 4
- Infinite deck, twice as many 2's
- Start with 3 showing
- After each card, you say "high" or "low"
- New card is flipped
- If you're right, you win the points shown on the new card
- Ties are no-ops
- If you're wrong, game ends

MDP Search Trees

- Each MDP state gives an expectimax-like search tree

(s, a) is a q-state

\((s, a, s') \) called a transition

\(T(s, a, s') = P(s'|s, a) \)

\(R(s, a, s') \)
Utilities of Sequences

- In order to formalize optimality of a policy, need to understand utilities of sequences of rewards.
- Typically consider stationary preferences:
 \[[r_0, r_1, r_2, \ldots] \to [r_0', r_1', r_2', \ldots] \]
 \[[r_0, r_1, r_2, \ldots] \to [r_0', r_1', r_2', \ldots] \]

- Theorem: only two ways to define stationary utilities:
 - Additive utility:
 \[U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \ldots \]
 - Discounted utility:
 \[U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 + \ldots \]

Infinite Utilities?!

- Problem: infinite state sequences have infinite rewards.
- Solutions:
 - Finite horizon:
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (\(\pi \) depends on time left)
 - Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like “done” for High-Low)
 - Discounting: for \(0 < \gamma < 1 \)
 \[U([r_0, \ldots, r_N]) = \sum_{t=0}^{N} \gamma^t r_t \leq R_{\text{max}}/(1 - \gamma) \]
 - Smaller \(\gamma \) means smaller “horizon” – shorter term focus

Discounting

- Typically discount rewards by \(\gamma < 1 \) each time step.
 - Sooner rewards have higher utility than later rewards.
 - Also helps the algorithms converge.
 - Formally:
 \[a \] \[s \] \[s, a, s' \] \[s' \]
 \[1 \] \[\gamma \] \[\gamma^2 \]

Recap: Defining MDPs

- Markov decision processes:
 - States \(S \)
 - Start state \(s_0 \)
 - Actions \(A \)
 - Transitions \(P(s'|s,a) \) (or \(T(s,a,s') \))
 - Rewards \(R(s,a,s') \) (and discount \(\gamma \))

 - MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility (or return) = sum of discounted rewards

Optimal Utilities

- Fundamental operation: compute the values (optimal expected maximum utilities) of states \(s \)

 - Why? Optimal values define optimal policies!
 - Define the value of a state \(s \):
 \[V^*(s) = \text{expected utility starting in } s \]
 - Define the value of a q-state (\(s,a \)):
 \[Q^*(s,a) = \text{expected utility starting in } s, \text{ taking action } a \text{ and thereafter acting optimally} \]
 - Define the optimal policy:
 \[\pi^*(s) = \text{optimal action from state } s \]

The Bellman Equations

- Definition of “optimal utility” leads to a simple one-step lookahead relationship amongst optimal utility values:

 - Optimal rewards = maximize over first action and then follow optimal policy

 - Formally:
 \[V^*(s) = \max_a Q^*(s,a) \]
 \[Q^*(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^*(s')] \]
 \[V^*(s) = \max_a \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^*(s')] \]
Solving MDPs

- We want to find the optimal policy \(\pi^* \)
- Proposal 1: modified expectimax search, starting from each state \(s \):
 \[
 \pi^*(s) = \arg \max_a Q^*(s, a)
 \]
 \[
 Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]
 \]
 \[
 V^*(s) = \max_a Q^*(s, a)
 \]

Why Not Search Trees?

- Why not solve with expectimax?
- Problems:
 - This tree is usually infinite (why?)
 - Same states appear over and over (why?)
 - We would search once per state (why?)
- Idea: Value iteration
 - Compute optimal values for all states all at once using successive approximations
 - Will be a bottom-up dynamic program similar in cost to memoization
 - Do all planning offline, no replanning needed!

Value Estimates

- Calculate estimates \(V_i^*(s) \)
 - Not the optimal value of \(s \)!
 - The optimal value considering only next \(k \) time steps (\(k \) rewards)
 - As \(k \to \infty \), it approaches the optimal value
- Why:
 - If discounting, distant rewards become negligible
 - If terminal states reachable from everywhere, fraction of episodes not ending becomes negligible
 - Otherwise, can get infinite expected utility and this approach actually won’t work

Value Iteration

- Idea:
 - Start with \(V_0^*(s) = 0 \), which we know is right (why?)
 - Given \(V_i^* \), calculate the values for all states for depth \(i+1 \):
 \[
 V_{i+1}^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i^*(s') \right]
 \]
 - This is called a value update or Bellman update
 - Repeat until convergence
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Example: Bellman Updates

\[
V_{i+1}(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]
\]
\[
V_2(3, 3) = \sum_{s'} T(3, 3, \text{right}, s') \left[R(3, 3) + 0.9 V_1(s') \right]
\]
\[
\max \text{ happens for } s' = 4
\]

Example: Value Iteration

- Information propagates outward from terminal states and eventually all states have correct value estimates
Convergence*

- Define the max-norm: \(\|U\| = \max_s |U(s)| \)

- Theorem: For any two approximations \(U \) and \(V \)
 \[\|U^t + 1 - V^t + 1\| \leq \gamma \|U^t - V^t\| \]
 i.e. any distinct approximations must get closer to each other, so in particular, any approximation must get closer to the true \(U \) and value iteration converges to a unique, stable, optimal solution

- Theorem:
 \[\|U^t + 1 - U^t\| < \epsilon \Rightarrow \|U^t + 1 - U^t\| < 2\epsilon/(1 - \gamma) \]
 i.e. once the change in our approximation is small, it must also be close to correct

Practice: Computing Actions

- Which action should we chose from state \(s \):
 - Given optimal values \(V \)?
 \[\arg\max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V(s')] \]
 - Given optimal \(q \)-values \(Q \)?
 \[\arg\max_a Q^*(s, a) \]
 - Lesson: actions are easier to select from \(Q \)'s!

Utilities for Fixed Policies

- Another basic operation: compute the utility of a state \(s \) under a fixed (general non-optimal) policy

- Define the utility of a state \(s \), under a fixed policy \(\pi \):
 \[V^\pi(s) = \text{expected total discounted rewards (return) starting in } s \text{ and following } \pi \]

- Recursive relation (one-step look-ahead / Bellman equation):
 \[V^\pi(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^\pi(s')] \]

Policy Evaluation

- How do we calculate the \(V \)'s for a fixed policy?
 - Idea one: modify Bellman updates
 \[V_0^\pi(s) = 0 \]
 \[V_{i+1}^\pi(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^\pi(s')] \]
 - Idea two: it’s just a linear system, solve with Matlab (or whatever)

Policy Iteration

- Problem with value iteration:
 - Considering all actions each iteration is slow: takes \(|A|\) times longer than policy evaluation
 - But policy doesn’t change each iteration, time wasted

- Alternative to value iteration:
 - Step 1: Policy evaluation: calculate utilities for a fixed policy (not optimal utilites) until convergence (fast)
 - Step 2: Policy improvement: update policy using one-step lookahead with resulting converged (but not optimal) utilities (slow but infrequent)
 - Repeat steps until policy converges

- This is policy iteration
 - It’s still optimal!
 - Can converge faster under some conditions

Policy Iteration

- Policy evaluation: with fixed current policy \(\pi \), find values with simplified Bellman updates:
 - Iterate until values converge
 \[V_{i+1}^\pi(s) = \sum_{s'} T(s, \pi_i(s), s') [R(s, \pi_i(s), s') + \gamma V_i^\pi(s')] \]

- Policy improvement: with fixed utilities, find the best action according to one-step look-ahead
 \[\pi_{k+1}(s) = \arg\max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^\pi(s')] \]
Comparison

- **In value iteration:**
 - Every pass (or "backup") updates both utilities (explicitly, based on current utilities) and policy (possibly implicitly, based on current policy)

- **In policy iteration:**
 - Several passes to update utilities with frozen policy
 - Occasional passes to update policies

- **Hybrid approaches (asynchronous policy iteration):**
 - Any sequences of partial updates to either policy entries or utilities will converge if every state is visited infinitely often