Announcements

- Project 0 (Python tutorial) is due today
 - If you don’t have a class account yet, pick one up after lecture
- Written 1 (Search) is due today
 - Drop off between 2:30-5:00 PM
- Project 1 (Search) is out and due next week Thursday

Section/Lecture
Recap: Search

Search problem:
- States (configurations of the world)
- Successor function: a function from states to lists of (state, action, cost) triples; drawn as a graph
- Start state and goal test

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem

loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
end

Important ideas:
- Fringe
- Expansion
- Exploration strategy

Main question: which fringe nodes to explore?
A* Review

- A* uses both backward costs g and forward estimate h: $f(n) = g(n) + h(n)$

- A* tree search is optimal with admissible heuristics (optimistic future cost estimates)

- Heuristic design is key: relaxed problems can help

Admissible Heuristics

- A heuristic h is \textit{admissible} (optimistic) if:
 \[h(n) \leq h^*(n) \]
 where $h^*(n)$ is the true cost to a nearest goal

- Example:

- Coming up with admissible heuristics is most of what’s involved in using A* in practice.
Optimality of A*: Blocking

Notation:
- \(g(n) = \text{cost to node } n \)
- \(h(n) = \text{estimated cost from } n \) to the nearest goal (heuristic)
- \(f(n) = g(n) + h(n) = \) estimated total cost via \(n \)
- \(G^* \): a lowest cost goal node
- \(G \): another goal node

Proof:
- What could go wrong?
 - We’d have to have to pop a suboptimal goal \(G \) off the fringe before \(G^* \)
- This can’t happen:
 - Imagine a suboptimal goal \(G \) is on the queue
 - Some node \(n \) which is a subpath of \(G^* \) must also be on the fringe (why?)
 - \(n \) will be popped before \(G \)
Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work. Why?

Graph Search

- Very simple fix: never expand a state twice

```
function Graph-Search(problem, fringe) returns a solution, or failure
  closed = an empty set
  fringe = Insert(Make-Node(Initial-State[problem]), fringe)
  loop do
    if fringe is empty then return failure
    node = Remove-Front(fringe)
    if Goal-Test(problem, State[node]) then return node
    if State[node] is not in closed then
      add State[node] to closed
      fringe = InsertAll(Expand(node, problem), fringe)
  end
```

- Can this wreck completeness? Optimality?
Optimality of A* Graph Search

Proof:
- New possible problem: nodes on path to G^* that would have been in queue aren’t, because some worse n' for the same state as some n was dequeued and expanded first (disaster!)
- Take the highest such n in tree
- Let p be the ancestor which was on the queue when n' was expanded

Assume $f(p) < f(n) < f(n')$
- $f(n) < f(n')$ because n' is suboptimal
- p would have been expanded before n'
- Contradiction!

Consistency

- Wait, how do we know parents have better f-values than their successors?
- Couldn’t we pop some node n, and find its child n' to have lower f value?
- YES:

 \[f(A) = 10 + 10 = 20 \]
 \[f(B) = 13 + 0 = 13 \]

 \[g = 10 \]
 \[h = 10 \]

- What can we require to prevent these inversions?
- Consistency: $c(n, a, n') \geq h(n) - h(n')$
- Real cost must always exceed reduction in heuristic
A* Graph Search Gone Wrong

State space graph

Search tree

C is already in the closed-list, hence not placed in the priority queue

Consistency

The story on Consistency:

- Definition: \(\text{cost}(A \text{ to } C) + h(C) \geq h(A) \)
- Consequence in search tree:
 - Two nodes along a path: \(N_A, N_C \)
 - \(g(N_C) = g(N_A) + \text{cost}(A \text{ to } C) \)
 - \(g(N_C) + h(C) \geq g(N_A) + h(A) \)
- The f value along a path never decreases
- Non-decreasing f means you’re optimal to every state (not just goals)
Optimality Summary

- **Tree search:**
 - A* optimal if heuristic is admissible (and non-negative)
 - Uniform Cost Search is a special case (h = 0)

- **Graph search:**
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)

- Consistency implies admissibility
 - Challenge: Try to prove this.
 - Hint: try to prove the equivalent statement not admissible implies not consistent

- In general, natural admissible heuristics tend to be consistent

- Remember, costs are always positive in search!

What is Search For?

- **Models of the world:** single agents, deterministic actions, fully observed state, discrete state space

- **Planning:** sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics to guide, fringe to keep backups

- **Identification:** assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems
Constraint Satisfaction Problems

- **Standard search problems:**
 - State is a "black box": arbitrary data structure
 - Goal test: any function over states
 - Successor function can be anything

- **Constraint satisfaction problems (CSPs):**
 - A special subset of search problems
 - State is defined by \(\text{variables} X_i \) with values from a domain \(D \) (sometimes \(D \) depends on \(i \))
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

- Simple example of a formal representation language

- Allows useful general-purpose algorithms with more power than standard search algorithms

Example: N-Queens

- **Formulation 1:**
 - Variables: \(X_{ij} \)
 - Domains: \{0, 1\}
 - Constraints

\[
\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}
\]

\[
\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\}
\]

\[
\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\}
\]

\[
\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0, 0), (0, 1), (1, 0)\}
\]

\[
\sum_{i,j} X_{ij} = N
\]
Example: N-Queens

- Formulation 2:
 - Variables: Q_i
 - Domains: $\{1, 2, 3, \ldots N\}$

- Constraints:
 - Implicit: $\forall i, j \text{ non-threatening}(Q_i, Q_j)$
 - Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$

Example: Map-Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domain: $D = \{\text{red, green, blue}\}$
- Constraints: adjacent regions must have different colors
 - $WA \neq NT$
 - $(WA, NT) \in \{(\text{red, green}), (\text{red, blue}), (\text{green, red}), \ldots\}$

- Solutions are assignments satisfying all constraints, e.g.:
 - $\{WA = \text{red}, NT = \text{green}, Q = \text{red}, NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green}\}$
Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: Cryptarithmetic

- Variables (circles):
 \[F, T, U, W, R, O, X_1, X_2, X_3 \]
- Domains:
 \[\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \]
- Constraints (boxes):
 \[\text{alldiff}(F, T, U, W, R, O) \]
 \[O + O = R + 10 \cdot X_1 \]
 \[\ldots \]
Example: Sudoku

Variables:
- Each (open) square

Domains:
- \{1,2,\ldots,9\}

Constraints:
- 9-way alldiff for each column
- 9-way alldiff for each row
- 9-way alldiff for each region

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra
- An early example of a computation posed as a CSP

- Look at all intersections
- Adjacent intersections impose constraints on each other
Varieties of CSPs

- **Discrete Variables**
 - Finite domains
 - Size d means $O(d^n)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

- **Continuous variables**
 - E.g., start-end state of a robot
 - Linear constraints solvable in polynomial time by LP methods (see cs170 for a bit of this theory)

Varieties of Constraints

- **Varieties of Constraints**
 - Unary constraints involve a single variable (equiv. to shrinking domains):
 \[SA \neq \text{green} \]
 - Binary constraints involve pairs of variables:
 \[SA \neq WA \]
 - Higher-order constraints involve 3 or more variables:
 - E.g., cryptarithmetic column constraints

- **Preferences (soft constraints):**
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We’ll ignore these until we get to Bayes’ nets)
Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Floorplanning
- Fault diagnosis
- … lots more!

- Many real-world problems involve real-valued variables…

Standard Search Formulation

- Standard search formulation of CSPs (incremental)
- Let’s start with the straightforward, dumb approach, then fix it
- States are defined by the values assigned so far
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
- Simplest CSP ever: two bits, constrained to be equal
Search Methods

- What does BFS do?
- What does DFS do?
- What’s the obvious problem here?
- What’s the slightly-less-obvious problem?

Backtracking Search

- Idea 1: Only consider a single variable at each point
 - Variable assignments are commutative, so fix ordering
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
 - How many leaves are there?

- Idea 2: Only allow legal assignments at each point
 - I.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to figure out whether a value is ok
 - “Incremental goal test”

- Depth-first search for CSPs with these two improvements is called \textit{backtracking search} (useless name, really)

- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve n-queens for \(n = 25 \)
Backtracking Search

Function `Backtracking-Search(csp)` returns solution/failure
 return Recursive-Backtracking({}, csp)

Function `Recursive-Backtracking(assignment, csp)` returns soln/failure
 if assignment is complete then return assignment
 var ← Select-Unassigned-Variable(Variables[csp], assignment, csp)
 for each value in Order-Domain-Values(var, assignment, csp) do
 if value is consistent with assignment given CONSTRAINTS[csp] then
 add {var = value} to assignment
 result ← Recursive-Backtracking(assignment, csp)
 if result ≠ failure then return result
 remove {var = value} from assignment
 return failure

- What are the choice points?
Improving Backtracking

- General-purpose ideas can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
 - Can we take advantage of problem structure?
Minimum Remaining Values

- Minimum remaining values (MRV):
 - Choose the variable with the fewest legal values

- Why min rather than max?
- Also called “most constrained variable”
- “Fail-fast” ordering

Degree Heuristic

- Tie-breaker among MRV variables
- Degree heuristic:
 - Choose the variable participating in the most constraints on remaining variables

- Why most rather than fewest constraints?
Least Constraining Value

- **Given a choice of variable:**
 - Choose the *least constraining value*
 - The one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this!

- Why least rather than most?

- Combining these heuristics makes 1000 queens feasible

Forward Checking

- Idea: Keep track of remaining legal values for unassigned variables (using immediate constraints)
- Idea: Terminate when any variable has no legal values

[Demo: forward checking animation]
Constraint Propagation

- Forward checking propagates information from assigned to adjacent unassigned variables, but doesn't detect more distant failures:

- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- Constraint propagation repeatedly enforces constraints (locally)

Arc Consistency

- Simplest form of propagation makes each arc consistent
 - $X \rightarrow Y$ is consistent iff for every value x there is some allowed y

- If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- What's the downside of arc consistency?
- Can be run as a preprocessor or after each assignment
Arc Consistency

```plaintext
function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
  (X_i, X_j) ← REMOVE-FIRST(queue)
  if REMOVE-INCIDENTAL-VALUES(X_i, X_j) then
    for each X_k in Neighbors[X_i] do
      add (X_k, X_i) to queue
```

```plaintext
function REMOVE-INCIDENTAL-VALUES(X_i, X_j) returns true iff succeeds
removed ← false
for each x in Domain[X_i] do
  if no value y in Domain[X_j] allows (x, y) to satisfy the constraint X_i ← X_j
    then delete x from Domain[X_i]; removed ← true
return removed
```

- Runtime: \(O(n^2d^3)\), can be reduced to \(O(n^2d^2)\)
- … but detecting all possible future problems is NP-hard – why?

Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left
 (and not know it)
Demo: Backtracking + AC
Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has c variables out of n total
- Worst-case solution cost is $O((n/c)(d^c))$, linear in n
 - E.g., $n = 80$, $d = 2$, $c = 20$
 - $2^{80} = 4$ billion years at 10 million nodes/sec
 - $(4)(2^{20}) = 0.4$ seconds at 10 million nodes/sec

Tree-Structured CSPs

- Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering
- For $i = n : 2$, apply RemoveInconsistent(\text{Parent}(X_i), X_i)
- For $i = 1 : n$, assign X_i consistently with \text{Parent}(X_i)
- Runtime: $O(n d^2)$
Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n \cdot d^2)$ time!
 - Compare to general CSPs, where worst-case time is $O(d^n)$
 - This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors’ domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O((d^{c}) (n-c) \cdot d^2)$, very fast for small c
Iterative Algorithms for CSPs

- Greedy and local methods typically work with “complete” states, i.e., all variables assigned

- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators reassign variable values

- Variable selection: randomly select any conflicted variable

- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hill climb with \(h(n) = \) total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns (\(4^4 = 256 \) states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: \(h(n) = \) number of attacks
Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[R = \frac{\text{number of constraints}}{\text{number of variables}} \]

Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
- Backtracking = depth-first search with one legal variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- The constraint graph representation allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice
Local Search Methods

- Queue-based algorithms keep fallback options (backtracking)
- Local search: improve what you have until you can’t make it better
- Generally much more efficient (but incomplete)

Types of Problems

- Planning problems:
 - We want a path to a solution (examples?)
 - Usually want an optimal path
 - *Incremental formulations*

- Identification problems:
 - We actually just want to know what the goal is (examples?)
 - Usually want an optimal goal
 - *Complete-state formulations*
 - Iterative improvement algorithms
Hill Climbing

- Simple, general idea:
 - Start wherever
 - Always choose the best neighbor
 - If no neighbors have better scores than current, quit

- Why can this be a terrible idea?
 - Complete?
 - Optimal?

- What’s good about it?

Hill Climbing Diagram

- Random restarts?
- Random sideways steps?
Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem
         schedule, a mapping from time to “temperature”

local variables: current, a node
                 next, a node
                 T, a “temperature” controlling prob. of downward steps

current ← MAKE-NODE(INITIAL-STATE[problem])
for t ← 1 to ∞ do
    T ← schedule[t]
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← VALUE[next] − VALUE[current]
    if ΔE > 0 then current ← next
    else current ← next only with probability e^{Δ E/T}
```

Simulated Annealing

- Theoretical guarantee:
 - If T decreased slowly enough, will converge to optimal state!

- Is this an interesting guarantee?

- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape, the less likely you are to every make them all in a row
 - People think hard about ridge operators which let you jump around the space in better ways
Beam Search

- Like greedy search, but keep K states at all times:

- Variables: beam size, encourage diversity?
- The best choice in MANY practical settings
- Complete? Optimal?
- What criteria to order nodes by?