Recap: Search

Search problem:
- States (configurations of the world)
- Successor function: a function from states to lists of (state, action, cost) triples; drawn as a graph
- Start state and goal test

Main question: which fringe nodes to explore?

A* Review

- A* uses both backward costs g and forward estimate h: $f(n) = g(n) + h(n)$
- A* tree search is optimal with admissible heuristics (optimistic future cost estimates)
- Heuristic design is key: relaxed problems can help

General Tree Search

Detailed pseudocode is in the book!

Admissible Heuristics

- A heuristic h is admissible (optimistic) if:
 $$ h(n) \leq h^*(n) $$
 where $h^*(n)$ is the true cost to a nearest goal
- Example:
- Coming up with admissible heuristics is most of what’s involved in using A* in practice.

Announcements

- Project 0 (Python tutorial) is due today
- Written 1 (Search) is due today
- Project 1 (Search) is out and due next week Thursday
- Section/Lecture

Many slides from Dan Klein
Optimality of A*: Blocking

Notation:
- \(g(n) = \text{cost to node } n \)
- \(h(n) = \text{estimated cost from } n \) to the nearest goal (heuristic)
- \(f(n) = g(n) + h(n) = \text{estimated total cost via } n \)
- \(G^* \): a lowest cost goal node
- \(G \): another goal node

Proof:
- What could go wrong?
- We’d have to have to pop a suboptimal goal \(G \) off the fringe before \(G^* \).
- This can’t happen:
 - Imagine a suboptimal goal \(G \) is on the queue
 - Some node \(n \) which is a subpath of \(G^* \) must also be on the fringe (why?)
 - \(n \) will be popped before \(G \)

Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work. Why?

Graph Search

- Very simple fix: never expand a state twice

Optimality of A* Graph Search

Proof:
- New possible problem: nodes on path to \(G^* \) that would have been in queue aren’t, because some worse \(n \) for the same state as some \(n \) was dequeued and expanded first (disaster!)
- Take the highest such \(n \) in tree
- Let \(p \) be the ancestor which was on the fringe when \(n \) was expanded
- Assume \(f(p) \leq f(n) \)
- \(f(p) = g(p) + h(p) \), \(f(n) = g(n) + h(n) \)
- \(f(p) < f(n) \) because \(n \) is suboptimal
- \(p \) would have been expanded before \(n \)
- Contradiction!

Consistency

- Wait, how do we know parents have better f-values than their successors?
- Couldn’t we pop some node \(n \), and find its child \(n' \) to have lower f-value?
- YES:

 \[
 f(p) = g(n) + h(n) \\
 f(n) = g(n) + h(n) < g(G^*) \\
 g(G) = f(G) \\
 g(G^*) = f(G^*) \leq f(G) \\
 g(n) < g(G^*) \leq f(G) < f(n) \\
 \]

- What can we require to prevent these inversions?
- Consistency: \(c(n, a, n') \geq h(n) - h(n') \)
- Real cost must always exceed reduction in heuristic
A* Graph Search Gone Wrong

State space graph

Search tree

S (0+2) A (1+4) B (1+1) C (2+1) G (6+0)

C is already in the closed-list, hence not placed in the priority queue

Consistency

The story on Consistency:
- Definition: cost(A to C) + h(C) ≥ h(A)
- Consequence in search tree:
 Two nodes along a path: N, N',
 g(N') = g(N) + cost(A to C)
 g(N') + h(C) ≥ g(N) + h(A)
- The f value along a path never decreases
- Non-decreasing f means you’re optimal to every state (not just goals)

Optimality Summary

- Tree search:
 - A* optimal if heuristic is admissible (and non-negative)
 - Uniform Cost Search is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
 - Challenge: Try to prove this.
 - Hint: try to prove the equivalent statement not admissible implies not consistent
- In general, natural admissible heuristics tend to be consistent
- Remember, costs are always positive in search!

What is Search For?

- Models of the world: single agents, deterministic actions, fully observed state, discrete state space
- Planning: sequences of actions
 - The path to the goal is important
 - Paths have various costs, depths
 - Heuristics to guide, fringe to keep backups
- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
- CSPs are specialized for identification problems

Constraint Satisfaction Problems

- Standard search problems:
 - State is a "black box": arbitrary data structure
 - Goal test: any function over states
 - Successor function can be anything
- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables Xi with values from a domain Di (sometimes Di depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
 - Simple example of a formal representation language
 - Allows useful general-purpose algorithms with more power than standard search algorithms

Example: N-Queens

- Formulation 1:
 - Variables: Xij
 - Domains: \{0, 1\}
- Constraints
 \[
 \forall i,j,k \ (X_{ij} \neq X_{jk} \neq X_{ki}) \\
 \forall i,j,k \ (X_{ij}, X_{ik}) \in \{(0,0), (0,1), (1,0)\} \\
 \forall i,j,k \ (X_{ij}, X_{ik}) \in \{(0,0), (0,1), (0,2)\} \\
 \forall i,j,k \ (X_{ij}, X_{ij+k}) \in \{(0,0), (0,1), (1,0)\} \\
 \forall i,j,k \ (X_{ij}, X_{ij+k}) \in \{(0,0), (0,1), (1,0)\}
 \]
 \[
 \sum_{i,j} X_{ij} = N
 \]
Example: N-Queens

- **Formulation 2:**
 - Variables: \(Q_k \)
 - Domains: \(\{1, 2, 3, \ldots, N\} \)
- **Constraints:**
 - Implicit: \(\forall i, j \) non-threatening \((Q_i, Q_j)\)
 - Explicit: \((Q_1, Q_2) \in \{ (1, 3), (1, 4), \ldots \} \)

Example: Map-Coloring

- **Variables:** \(WA, NT, Q, NSW, V, SA, T \)
- **Domain:** \(D = \{ \text{red}, \text{green}, \text{blue} \} \)
- **Constraints:** adjacent regions must have different colors
 - \(WA \neq NT \)
 - \((WA, NT) \in \{ (\text{red, green}), (\text{red, blue}), (\text{green, red}), \ldots \} \)
- **Solutions** are assignments satisfying all constraints, e.g.:
 - \(\{WA = \text{red}, NT = \text{green}, Q = \text{red}, NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green} \} \)

Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: Cryptarithmetic

- **Variables (circles):**
 - \(F, T, U, W, R, O, X_1, X_2, X_3 \)
- **Domains:** \(\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \)
- **Constraints (boxes):**
 - \(\text{alldiff}(F, T, U, W, R, O) \)
 - \(O + O = R + 10 \cdot X_1 \)

Example: Sudoku

- **Variables:**
 - Each (open) square
 - Domains: \(\{1, 2, \ldots, 9\} \)
- **Constraints:**
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra
- An early example of a computation posed as a CSP
- Look at all intersections
- Adjacent intersections impose constraints on each other
Varieties of CSPs

- **Discrete Variables**
 - Finite domains
 - Size \(d\) means \(O(d^n)\) complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

- **Continuous variables**
 - E.g., start-end state of a robot
 - Linear constraints solvable in polynomial time by LP methods (see cs170 for a bit of this theory)

Varieties of Constraints

- **Varieties of Constraints**
 - Unary constraints involve a single variable (equiv. to shrinking domains):
 - \(SA \neq \text{green}\)
 - Binary constraints involve pairs of variables:
 - \(SA \neq WA\)
 - Higher-order constraints involve 3 or more variables:
 - E.g., cryptarithmic column constraints

- **Preferences (soft constraints):**
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We’ll ignore these until we get to Bayes’ nets)

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Fault diagnosis
- … lots more!
- Many real-world problems involve real-valued variables…

Standard Search Formulation

- **Standard search formulation of CSPs (incremental)**
 - Let’s start with the straightforward, dumb approach, then fix it
 - States are defined by the values assigned so far
 - Initial state: the empty assignment, {};
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
 - Simplest CSP ever: two bits, constrained to be equal

Search Methods

- **What does BFS do?**
- **What does DFS do?**
- What’s the obvious problem here?
- What’s the slightly-less-obvious problem?

Backtracking Search

- **Idea 1:** Only consider a single variable at each point
 - Variable assignments are commutative, so fix ordering
 - I.e., \([WA = \text{red} \text{ then } NT = \text{green}]\) same as \([NT = \text{green} \text{ then } WA = \text{red}]\)
 - Only need to consider assignments to a single variable at each step
 - How many leaves are there?

- **Idea 2:** Only allow legal assignments at each point
 - I.e., consider only values which do not conflict previous assignments
 - Might have to do some computation to figure out whether a value is ok
 - “Incremental goal test”

- Depth-first search for CSPs with these two improvements is called backtracking search (useless name, really)
- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve n-queens for \(n \approx 25\)
Backtracking Search

- What are the choice points?

Backtracking Example

Improving Backtracking

- General-purpose ideas can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
 - Can we take advantage of problem structure?

Minimum Remaining Values

- Minimum remaining values (MRV):
 - Choose the variable with the fewest legal values

 - Why min rather than max?
 - Also called “most constrained variable”
 - “Fail-fast” ordering

Degree Heuristic

- Tie-breaker among MRV variables
- Degree heuristic:
 - Choose the variable participating in the most constraints on remaining variables

 - Why most rather than fewest constraints?
Least Constraining Value

- Given a choice of variable:
 - Choose the least constraining value
 - The one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this!
- Why least rather than most?
- Combining these heuristics makes 1000 queens feasible

Forward Checking

- Idea: Keep track of remaining legal values for unassigned variables (using immediate constraints)
- Idea: Terminate when any variable has no legal values

Constraint Propagation

- Forward checking propagates information from assigned to adjacent unassigned variables, but doesn’t detect more distant failures:
 - NT and SA cannot both be blue!
 - Why didn’t we detect this yet?
 - Constraint propagation repeatedly enforces constraints (locally)

Arc Consistency

- Simplest form of propagation makes each arc consistent:
 - $X \rightarrow Y$ is consistent iff for every x there is some allowed y
- If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- What’s the downside of arc consistency?
- Can be run as a preprocessor or after each assignment

Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

Arc Consistency

- Runtime: $O(n^2d^2)$ can be reduced to $O(nd^2)$
- … but detecting all possible future problems is NP-hard – why?
Demo: Backtracking + AC

Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has \(c \) variables out of \(n \) total
- Worst-case solution cost is \(O(n/c)(d^c) \), linear in \(n \)

\[\text{E.g., } n = 80, \, d = 2, \, c = 20 \]

\[2^{10} = 4 \text{ billion years at } 10 \text{ million nodes/sec} \]

\[(4)(2^{20}) = 0.4 \text{ seconds at } 10 \text{ million nodes/sec} \]

Tree-Structured CSPs

- Choose a variable as root, order variables from root to leaves such that every node’s parent precedes it in the ordering

\[\text{A} \rightarrow \text{B} \rightarrow \text{C} \rightarrow \text{D} \rightarrow \text{E} \rightarrow \text{F} \]

- For \(i = n : 2 \), apply RemoveInconsistent(Parent(X\(_i\)),X\(_i\))
- For \(i = 1 : n \), assign \(X \) consistently with Parent(X)
- Runtime: \(O(n \, d^2) \)

Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in \(O(n \, d^2) \) time!
- Compare to general CSPs, where worst-case time is \(O(d^n) \)
- This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors’ domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size \(c \) gives runtime \(O((d^c)(n-c) \, d^2) \), very fast for small \(c \)
Iterative Algorithms for CSPs

- Greedy and local methods typically work with "complete" states, i.e., all variables assigned

- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators reassign variable values

- Variable selection: randomly select any conflicted variable

- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hill climb with \(h(n) = \) total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns \((4^4 = 256 \) states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: \(h(n) = \) number of attacks

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary \(n \) with high probability (e.g., \(n = 10,000,000 \))

- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[
R = \frac{\text{number of constraints}}{\text{number of variables}}
\]

Performance of search over variable assignment space

Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values

- Backtracking = depth-first search with one legal variable assigned per node

- Variable ordering and value selection heuristics help significantly

- Forward checking prevents assignments that guarantee later failure

- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies

- The constraint graph representation allows analysis of problem structure

- Tree-structured CSPs can be solved in linear time

- Iterative min-conflicts is usually effective in practice

Local Search Methods

- Queue-based algorithms keep fallback options (backtracking)

- Local search: improve what you have until you can’t make it better

- Generally much more efficient (but incomplete)

Types of Problems

- Planning problems:
 - We want a path to a solution (examples?)
 - Usually want an optimal path
 - Incremental formulations

- Identification problems:
 - We actually just want to know what the goal is (examples?)
 - Usually want an optimal goal
 - Complete-state formulations
 - Iterative improvement algorithms
Hill Climbing

- Simple, general idea:
 - Start wherever
 - Always choose the best neighbor
 - If no neighbors have better scores than current, quit
- Why can this be a terrible idea?
 - Complete?
 - Optimal?
- What’s good about it?

Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
- But make them rarer as time goes on

```plaintext
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
        schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
T, a “temperature” controlling prob. of downward steps

1. current = MAKE-NODE(INITIAL-NODE(problem))
2. for t = 1 to ∞ do
   T = schedule(t)
   if ΔE < 0 then return current
   next = a randomly selected successor of current
   ΔE = VALUE(next) - VALUE(current)
   if ΔE ≥ 0 then current = next
   else current = next with probability e^(-ΔE/T)
```

- Theoretical guarantee:
 - If T decreased slowly enough, will converge to optimal state!
- Is this an interesting guarantee?
 - Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape, the less likely you are to every make them all in a row
 - People think hard about *ridge operators* which let you jump around the space in better ways

Beam Search

- Like greedy search, but keep K states at all times:

 - Variables: beam size, encourage diversity?
 - The best choice in MANY practical settings
 - Complete? Optimal?
 - What criteria to order nodes by?