Announcements

- Project 1 due Thursday
- Lecture videos reminder: don’t count on it
- Midterm
- Section: CSPs
 - Tue 3-4pm, 285 Cory
 - Tue 4-5pm, 285 Cory
 - Wed 11-noon, 285 Cory
 - Wed noon-1pm, 285 Cory

Today

- CSPs
- Efficient Solution of CSPs
 - Search
 - Constraint propagation
- Local Search

Example: Map-Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domain: \(D = \{\text{red}, \text{green}, \text{blue}\} \)
- Constraints: adjacent regions must have different colors

\[
\text{WA} \not= \text{NT} \quad \text{and} \quad (\text{WA}, \text{NT}) \in \{\text{(red, green)}, \text{(red, blue)}, \text{(green, red)}\}
\]

- Solutions are assignments satisfying all constraints, e.g.:

\[
\{\text{WA} = \text{red}, \text{NT} = \text{green}, \text{Q} = \text{red}, \text{NSW} = \text{green}, \text{V} = \text{red}, \text{SA} = \text{blue}, \text{T} = \text{green}\}
\]

Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: Cryptarithmetic

- Variables (circles):
 - F, T, U, W, R, O, X_1, X_2, X_3
- Domains:
 - \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
- Constraints (boxes):
 - alldiff(F, T, U, W, R, O)
 - \(O \mid O = R \mid 10 \cdot X_1 \)
 - \(\ldots \)
Example: Sudoku

- **Variables:** Each (open) square
- **Domains:** \(\{1, 2, \ldots, 9\}\)
- **Constraints:**
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra
- An early example of a computation posed as a CSP
- Look at all intersections
- Adjacent intersections impose constraints on each other

Varieties of CSPs

Discrete Variables
- Finite domains
 - Size \(d\) means \(O(d^n)\) complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
- Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

Continuous variables
- E.g., start-end state of a robot
- Linear constraints solvable in polynomial time by LP methods
 (see cs170 for a bit of this theory)

Varieties of Constraints

Varieties of Constraints
- Unary constraints involve a single variable (equiv. to shrinking domains):
 \(S \neq \text{green}\)
- Binary constraints involve pairs of variables:
 \(S \neq W\)
- Higher-order constraints involve 3 or more variables:
 - E.g., cryptarithmetic column constraints
- Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We’ll ignore these until we get to Bayes’ nets)

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Floorplanning
- Fault diagnosis
- … lots more!
- Many real-world problems involve real-valued variables…

Standard Search Formulation

- Standard search formulation of CSPs (incremental)
- Let’s start with the straightforward, dumb approach, then fix it
- States are defined by the values assigned so far
 - Initial state: the empty assignment
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
- Simplest CSP ever: two bits, constrained to be equal
Search Methods

- What does BFS do?
- What does DFS do?
 - [demo]
- What’s the obvious problem here?
- What’s the slightly-less-obvious problem?

Backtracking Search

- Idea 1: Only consider a single variable at each point
 - Variable assignments are commutative, so fix ordering
 - i.e., \([WA = red \text{ then } NT = green] \) same as \([NT = green \text{ then } WA = red] \)
 - Only need to consider assignments to a single variable at each step
 - How many leaves are there?
- Idea 2: Only allow legal assignments at each point
 - i.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to figure out whether a value is ok
 - “Incremental goal test”
- Depth-first search for CSPs with these two improvements is called backtracking search (useless name, really)
 - [DEMO]
- Backtracking search is the basic uninformed algorithm for CSPs
 - Can solve n-queens for \(n = 25 \)

Backtracking Search

Function `BACKTRACKING-SEARCH(cp)` returns solution, failure

```
function BACKTRACKING-SEARCH(cp) returns solution, failure
return RECURSIVE-BACKTRACKING(cp)
```

```
function RECURSIVE-BACKTRACKING(cp) returns solution, failure
if assignment is complete then return assignment
var = SELECT-UNASSIGNED-VARIABLE(VARIABLES(cp), assignment)
for each value in UNASSIGNED-VALUES(var, assignment, cp) do
  if value is consistent with assignment given CONSTRAINTS(cp) then
    new assignment = assignment \{ var ← value \}
    if result of RECURSIVE-BACKTRACKING(new assignment, cp) returns failure then
      return failure
  end if
end for
return failure
```

- What are the choice points?

Backtracking Example

Minimum Remaining Values

- Minimum remaining values (MRV):
 - Choose the variable with the fewest legal values
 - Minimum rather than max?
 - Also called “most constrained variable”
 - “Fail-fast” ordering

Improving Backtracking

- General-purpose ideas can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
 - Can we take advantage of problem structure?
Degree Heuristic

- Tie-breaker among MRV variables
- Degree heuristic:
 - Choose the variable participating in the most constraints on remaining variables
- Why most rather than fewest constraints?

Least Constraining Value

- Given a choice of variable:
 - Choose the least constraining value
 - The one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this!
- Why least rather than most?
- Combining these heuristics makes 1000 queens feasible

Forward Checking

- Idea: Keep track of remaining legal values for unassigned variables (using immediate constraints)
- Idea: Terminate when any variable has no legal values

Constraint Propagation

- Forward checking propagates information from assigned to adjacent unassigned variables, but doesn’t detect more distant failures:
- NT and SA cannot both be blue!
- Why didn’t we detect this yet?
- Constraint propagation repeatedly enforces constraints (locally)

Arc Consistency

- Simplest form of propagation makes each arc consistent
 - $X \rightarrow Y$ is consistent iff for every value x there is some allowed y
- If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- What’s the downside of arc consistency?
- Can be run as a preprocessor or after each assignment

Arc Consistency

- Runtime: $O(n^2 d^2)$, can be reduced to $O(n d^2)$
- … but detecting all possible future problems is NP-hard – why?

[demo: arc consistency animation]
Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

What went wrong here?

K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node's domain has a value which meets that node's unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.

- Higher k more expensive to compute

Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - ...
- Lots of middle ground between arc consistency and n-consistency! (e.g. path consistency)