Announcements

- Section format
- Written 2: due Thursday
Simple two-player game example

Tic-tac-toe Game Tree
Deterministic Games

- Many possible formalizations, one is:
 - States: \(S \) (start at \(s_0 \))
 - Players: \(P=\{1...N\} \) (usually take turns)
 - Actions: \(A \) (may depend on player / state)
 - Transition Function: \(S \times A \rightarrow S \)
 - Terminal Test: \(S \rightarrow \{t,f\} \)
 - Terminal Utilities: \(S \times P \rightarrow \mathbb{R} \)
 - Solution for a player is a policy: \(S \rightarrow A \)

Deterministic Single-Player?

- Deterministic, single player, perfect information:
 - Know the rules
 - Know what actions do
 - Know when you win
 - E.g. Freecell, 8-Puzzle, Rubik’s cube
 - ... it’s just search!
- Slight reinterpretation:
 - Each node stores a value: the best outcome it can reach
 - This is the maximal outcome of its children (the max value)
 - Note that we don’t have path sums as before (utilities at end)
 - After search, can pick move that leads to best node
Deterministic Two-Player

- E.g. tic-tac-toe, chess, checkers
- Zero-sum games
 - One player maximizes result
 - The other minimizes result
- Minimax search
 - A state-space search tree
 - Players alternate
 - Each layer, or ply, consists of a round of moves*
 - Choose move to position with highest minimax value = best achievable utility against best play

* Slightly different from the book definition

Minimax Example
Minimax Search

function Max-Value(state) returns a utility value
 if Terminal-Test(state) then return Utility(state)
 $v \leftarrow -\infty$
 for a, s in Successors(state) do $v \leftarrow \max(v, \text{Min-Value}(s))$
 return v

function Min-Value(state) returns a utility value
 if Terminal-Test(state) then return Utility(state)
 $v \leftarrow \infty$
 for a, s in Successors(state) do $v \leftarrow \min(v, \text{Max-Value}(s))$
 return v

Minimax Properties

- Optimal against a perfect player. Otherwise?
- Time complexity?
 - $O(b^m)$
- Space complexity?
 - $O(bm)$
- For chess, $b \approx 35$, $m \approx 100$.
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?
Pruning

Alpha-Beta Pruning

- **General configuration**
 - We’re computing the MIN-VALUE at \(n \)
 - We’re looping over \(n \)'s children
 - \(n \)'s value estimate is dropping
 - \(a \) is the best value that MAX can get at any choice point along the current path
 - If \(n \) becomes worse than \(a \), MAX will avoid it, so can stop considering \(n \)'s other children
 - Define \(b \) similarly for MIN
Alpha-Beta Pseudocode

```python
def MAX-VALUE(state):
    if TERMINAL-TEST(state):
        return UTILITY(state)
    v = -\infty
    for a, s in SUCCESSORS(state):
        v = MAX(v, MIN-VALUE(s))
    return v

def MIN-VALUE(state, \alpha, \beta):
    if TERMINAL-TEST(state):
        return UTILITY(state)
    v = \infty
    for a, s in SUCCESSORS(state):
        v = MIN(v, MAX-VALUE(s, \alpha, \beta))
    if v < \alpha:
        return v
    \alpha = MAX(\alpha, v)
    return v
```

Alpha-Beta Pruning Properties

- This pruning has **no effect** on final result at the root
- Values of intermediate nodes might be wrong!
- Good child ordering improves effectiveness of pruning
- With “perfect ordering”:
 - Time complexity drops to \(O(b^{m/2})\)
 - Doubles solvable depth!
 - Full search of, e.g. chess, is still hopeless...
- This is a simple example of **metareasoning** (computing about what to compute)
Alpha-Beta Pruning Example

Starting a/b $[\infty, \infty]$

$[\infty, \infty]$

$[\infty, 3]$

$[3, \infty]$

a is MAX's best alternative here or above

b is MIN's best alternative here or above
Resource Limits

- Cannot search to leaves
- Depth-limited search
 - Instead, search a limited depth of tree
 - Replace terminal utilities with an eval function for non-terminal positions
- Guarantee of optimal play is gone
- More plies makes a BIG difference

Example:
- Suppose we have 100 seconds, can explore 10K nodes / sec
- So can check 1M nodes per move
- α-β reaches about depth 8 – decent chess program

Evaluation Functions

- Function which scores non-terminals
 - Ideal function: returns the utility of the position
 - In practice: typically weighted linear sum of features:
 \[
 \text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)
 \]
 - e.g. $f_1(s) = (\text{num white queens} - \text{num black queens})$, etc.
Why Pacman Can Starve

- He knows his score will go up by eating the dot now
- He knows his score will go up just as much by eating the dot later on
- There are no point-scoring opportunities after eating the dot
- Therefore, waiting seems just as good as eating

Iterative Deepening

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of length 1 or less. (DFS gives up on any path of length 2)
2. If “1” failed, do a DFS which only searches paths of length 2 or less.
3. If “2” failed, do a DFS which only searches paths of length 3 or less.
 and so on.

Why do we want to do this for multiplayer games?
Non-Zero-Sum Games

- Similar to minimax:
 - Utilities are now tuples
 - Each player maximizes their own entry at each node
 - Propagate (or back up) nodes from children