
Problem Set 5 Solutions

Problem 1

The energy difference between the ground state (lowest energy level) and first
excited state (next level up) in a hydrogen atom is about 10 eV. The diameter
of a hydrogen atom is about 1Å = 10−10m. If we model a hydrogen atom as
a 1-D box with hard walls, then what is the length of the box to get the same
energy level spacing between the ground state and the first excited state as in
hydrogen? How good do you think this analogy is? Can we get the energy level
spacing right between the higher energy levels as well?

The energy levels of the square well are given by:

En =
n2~2π2

2mL2

And we want that the energy spacing between the first and second levels is equal
to 10eV:

∆E = 10eV =
(4− 1)~2π2

2mL2

And solving for L, we have:

L =

√
3~2π2

2m∆E
≈ 0.34nm

A hint: Use Google to calculate this...

sqrt( (3 * hbar^2 *pi^2)/(2 * m_e * 10eV) )

Problem 2

Consider a particle of mass = m sitting in the ground state of a box of length
= L . Suppose that one wall of the box is suddenly moved out so that the length
of the box becomes length = 3L .
a) If the energy of the particle is measured right after moving the wall, then
what is the probability that the particle with be found in the n = 10 state of
the new box?

The wavefunction of the particle immediately after the expansion will be un-
changed with respect to the wavefunction before the expansion:

ψ1(x) =

{ √
2
π sin πx

L x ∈ [0, L]
0 x 6∈ [0, L]

We wish to calculate the overlap of this wavefunction with the n = 10 excited
state of the new well.

Ψ10(x) =

{ √
2
π sin 10πx

3L x ∈ [0, 3L]
0 x 6∈ [0, 3L]
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This overlap is: ∫ L

0

ψ∗1(x)Ψ∗
1(x) =

∫ L

0

2
π

sin
πx

L
sin

10πx
3L

=
9
√

3L
91π2

b) How does this probability change with time?
It doesn’t! The probability of being found in a particular eigenstate of the
system is independent of time (if the Hamiltonian is not changing).

Problem 3

a) Show that
e−iθα = cos θI − i sin θα

where α ∈ {I,X, Y, Z} is a Pauli matrix is a Pauli matrix.

We can do this by expanding the exponent in a power series:

e−iθα = I + (−iθα) +
1
2

(−iθα)2 +
1
6

(−iθα)3 + . . .

=
(
I − 1

2
(θα)2 +

1
4!

(θα)4 + . . .

)
− i
(

(θα)− 1
3!

(θα)3 +
1
5!

(θα)5 + . . .

)
= I cos(θ)− iα sin(θ)

Where we have used that

αn =
{
α n even
I n odd

b) Show that
XYX = −Y

where X and Y are the Pauli matrices. Write the rotation operator Ry(γ) =
e−iγY/2 in terms of linear functions of the Pauli matrices. Use theses two results
to show that

XRy(γ)X = Ry(−γ)

The first thing is the identity above. This can be shown using the anticommu-
tation relations for the Pauli matrices:

{σi, σj} = 2δijI

Plugging in X,Y , we have
XY + Y X = 0
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And multiplying on the right by X (recalling that X2 = I), we have:

XYX + Y XX = XYX + Y = 0

Thus,
XYX = −Y

Now we can write the rotation operator using the results from part (a):

Ry(γ) = e−iγY/2 = I cos (γ/2)− iY sin (γ/2)

Thus,

XRy(γ)X = Xe−iγY/2X

= XIX cos (γ/2)− iXY X sin (γ/2)
= I cos (γ/2) + iY sin (γ/2)
= I cos (−γ/2)− iY sin (−γ/2)
= Ry(−γ)

c) Write the one-qubit operations X and Y in terms of the rotation operators
Rα(θ), α ∈ {x, y, z} on the Bloch sphere, specifiying the angles of rotation.
[Hint: you may consider their action on the state |0〉]

Notice the form of the rotation operator:

Rα(θ) = I cos (θ/2)− iα sin(θ/2)

The first thing we notice, is that we want the coefficient of I to be zero, so
θ = ±π, giving:

Rα(±π) = ∓iα

If we let α = X, then we get what we wanted, up to a constant phase of −i.
The same trick works for Y!
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