
MULTIPLE REPRESENTATION, GENERIC

FUNCTIONS 8
COMPUTER SCIENCE 61A

October 24, 2013

1 Multiple Representations

The ability to represent data using different representations without breaking the modu-
larity of a program rests on our ability to define a common message interface for the data
type.

So what exactly is an interface? An interface is the set of messages that a data type un-
derstands and can respond to. If we are talking about an object, then we can say that its
interface is made up of all of its methods and attributes. For instance, the interface for a
Person class might consist of the name attribute, the say, ask, and greet methods, as well
as the attributes and methods of its ancestor classes.

When implementing a common interface for an abstract data type that has multiple rep-
resentations, there must be a subset of messages that both representations understand.
This set of common messages is the common interface. A system that uses multiple data
representations and is designed with common interfaces is modular because one can add
any number of different representations without needing to change code already written.
All the implementer needs to do is to ensure that the new representation understands the
messages required by the interface.

1.1 Questions

1. What do Python strings, tuples, lists, dictionaries, ranges, etc. all have in common?
Hint: What happens when you toss one of these data types into a for loop?

1



DISCUSSION 8: MULTIPLE REPRESENTATION, GENERIC FUNCTIONS Page 2
2. Why can’t you put something else, say an integer, into the for loop?

>>> for elem in 5:
... print(elem)
Error!

3. Suppose that these datatypes all implement a common interface called Iterable that
expects the messages ’current’ and ’next’. The ’current’ attribute starts out being the
first element in the datatype. Each time we pass the ’next’ message to the datatype,
current becomes the ’next’ element in the Iterable datatype. If ’current’ is the last
element, then passing ’next’ will cause ’current’ to be set to None.

Write a code snippet that can implement a for loop that prints out each element using
this common interface. You may pass messages to the datatype using dot notation.
(The task here is simple, but the ideas are important. We can use this common in-
terface to iterate over both lists, tuples, and ranges, which are sequences, as well as
dictionaries, which are NOT sequences.)

data = create_data()

4. After acing CS61A and becoming a renowned professor, you invent a new datatype
with magical properties. Because of the fond memories you have of your first com-
puter science course at Berkeley, you decide that the new datatype should implement
the Iterable interface described during your 8th week discussion section. On a high
level, what do you need to do?

CS61A Fall 2013: John DeNero, with
Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan



DISCUSSION 8: MULTIPLE REPRESENTATION, GENERIC FUNCTIONS Page 3

2 Generic Operators

In the previous section, we saw how to work with multiple representations of data, by
forcing each of the representations to use a common method interface. But suppose we
wanted to generalize this further. Could we write functions that work with arguments
that don’t even work with a common interface?

We are going to employ type dispatching. The idea: our generic functions will see argu-
ments of various data types. We can inspect what type of data the argument is. Now
suppose we have been keeping a table that holds functionality for interacting with spe-
cific data types. We can simply look up the argument’s data type in the table, which will
return to us a function that we know will work with the argument’s data type.

2.1 Type Dispatching

Revisiting the complex number example, we have:

def type_tag(x):
return type_tag.tags[type(x)]

type_tag.tags = {ComplexRI: ’com’, ComplexMA: ’com’, Rational: ’rat’}

Now type tag.tags is a dictionary that associates data types (specifically, a class name)
with a key word that we can use to look up the type tag.

Next, we can implement a generic add function:

def add(z1, z2):
types = (type_tag(z1), type_tag(z2))
return add.implementations[types](z1, z2)

add.implementations = {}
add.implementations[(’com’, ’com’)] = add_complex
add.implementations[(’com’, ’rat’)] = add_complex_and_rational
add.implementations[(’rat’, ’com’)] = lambda x, y:
add_complex_and_rational(y, x)
add.implementations[(’rat’, ’rat’)] = add_rational

So what happens when we call add(ComplexRI(2, 3), ComplexRI(4, 5))? Let’s
refer to the two complex numbers as z1 and z2. type tag looks up the tag for each
them and returns ’com’ and ’com’. We then look up (’com’, ’com’) in our table of sup-
ported implementations of add and see that we should use add complex. We then in-
voke add complex(z1, z2) which works without a hitch because all the data types
match up.

CS61A Fall 2013: John DeNero, with
Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan



DISCUSSION 8: MULTIPLE REPRESENTATION, GENERIC FUNCTIONS Page 4
2.2 Questions

The TAs have broken out in a cold war; apparently, at the last midterm-grading session,
someone ate the last piece of sushi and refused to admit it. It is near the end of the
semester, and John really needs to enter the grades. Unfortunately, the TAs represent the
grades of their students differently, and refuse to change their representation to someone
else’s. John has asked you to look into writing generic functions for Keegan’s and Julia’s
student records.

1. Keegan and Julia have agreed to release their implementations of student records,
which are given below:

class KM_record(object):
"""A student record formatted via Keegan’s standard"""
def __init__(self, name, grade):

"""name is a string containing the student’s name,
and grade is a grade object"""
self.student_info = [name, grade]

class JO_record(object):
"""A student record formatted via Julia’s standard"""
def __init__(self, name, grade):

"""name is a string containing the student’s name,
and grade is a grade object"""
self.student_info = {’name’: name, ’grade’: grade}

Write functions get name and get grade, which take in a student record and return
the name and grade, respectively.

type_tag.tags = {KM_record: ’KM’, JO_record: ’JO’}

CS61A Fall 2013: John DeNero, with
Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan



DISCUSSION 8: MULTIPLE REPRESENTATION, GENERIC FUNCTIONS Page 5
2. Keegan and Julia also use their own grade objects to store grades. Here are the defi-

nitions for their grade class:

class KM_grade(object):
def __init__(self, total_points):

if total_points > 90:
letter_grade = ’A’

else:
letter_grade = ’F’

self.grade_info = (total_points, letter_grade)

class JO_grade(object):
def __init__(self, total_points):

self.grade_info = total_points

Write a function compute average total, which takes in a list of records (that
could be formatted via either standard) and computes the average total points of all
the students in the list.

CS61A Fall 2013: John DeNero, with
Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan



DISCUSSION 8: MULTIPLE REPRESENTATION, GENERIC FUNCTIONS Page 6
3. Lastly, John needs you to convert all student records into the format that he uses.

Unlike Keegan and Julia, John is actually helpful and provides the class definition
of his formatted student records. Unfortunately, his email was corrupted so you can
only see the first few lines of his class definition:

class JD_grade(object):
"""A student record formatted via John’s standard"""
def __init__(self, name_str, grade_num):

"""NOTE: name_str must be a string, grade_num must be a number"""

Write a function convert to JD which takes a list of student records formatted ei-
ther using Keegan’s or Julia’s standard, and returns a list of the same student records
but now formatted using John’s standard.

def convert_to_JD(records):

CS61A Fall 2013: John DeNero, with
Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan


	Multiple Representations
	Questions

	Generic Operators
	Type Dispatching
	Questions


