Lecture #3: Environments

e Substitution is not as simple as it might seem.

e For example:

def f(x):
def g(x):
return x + 10

return g(5)
£(3)

e When we call f(3), we should not substitute 3 for the xs in g!
e And there are other difficulties...

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 1

Names

e Evaluating expressions that are literals is easy: the literal's text
gives all the information needed.

e But how did T evaluate names like add, mul, or print?
e How do I explain assignment? Substitution inadequate.

x =3

print (x)

x = 4

print(x) # After x = 3, does this x change to 377!

e Deduction: there must be another source of information.

e We'll use the concept of an environment to explain it.

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 2

Environments

e An environment is a mapping from names to values.
e We say that a name is bound to a value in this environment.

e Every expression is evaluated in an environment, which supplies the
meanings of any names in it.

e Simplest environment consists of a single global environment frame:

@)
Imported —»mul: > AX, Y LT XYy >
Pre-defined —»b'r.in’r: » Al x: < print x >
Assigned — wradius: 10
Assigned e . _
by def ———»square: »)\ x: return mul(x, x)

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 3

Evaluation of Names

e To evaluate a name (identifier) in an environment, look for what that
name “is bound to" in that environment.

e For example, in this situation. ..

mul:
|'3.r'.i nt:
'r‘.a.di us:

square:

Evaluation Environment

for Expression

Last modified: Mon Mar 3 01:54:56 2014

A

©
> AX Y LT XYy >
» Al x: < print x >
10
» A x: return mul(x, x)
Expression’s Value Expression

% square(radi us)j

CS61A: Lecture #3 4

Evaluation of Names (IT)

...We find the values for square and radius in the global frame (the big
box with the globe on its upper right).

mul: P > AX Y LT XYy>
|'3'r'.in’r: » Al x: < print x >
radius: 10

édﬁare: » A\ x: return mul(x, x)

/{) A x: mul(x, x)| (10) }

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 5

Evaluation of Names: More Complicated Environments

e In general, as we'll see, environments consist of chains of frames.

e Here, we find the value of x in the small, “local frame"

e We don't find mul, there, so we must follow the “environment link"

looking for it.

Environment
link

A local frame

mul:

pr'l nt:

radius:

square:

)

> AX, Yy K<x XYy>

10

» Al x: < print x >

» A x: return mul(x, x)

Last modified: Mon Mar 3 01:54:56 2014

mul(x, x) }

CS61A: Lecture #3 6

More Complicated Environments (II)

Environment
link

A local frame

mul:
print:

square:

T Xy <L XYy >
— |\l Xt < print x >
radius: 10

» A\ x: return mul(x, x)

Last modified: Mon Mar 3 01:54:56 2014

o[\ x,yi <z xy>| (10],10))]

CS61A: Lecture #3 7

Evaluating User-Defined Function Calls

e Consider the expression square(mul(x, x)) in

from operator import mul
def square(x):
return mul (x, x)
X = -2
print (square(mul(x, 5)))

D
mul: »AX, YKLz XYy >
print: >\l x: < print x >
f‘f _ G Expression
square: > |\ x: mul(x, x) Evaluation
Evaluation -~ 5@ square(mul(x, 5)) |

Environment

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 8

Evaluating User-Defined Function Calls (II)

e First evaluate the subexpressions of square(mul(x, x)) in the global
environment:

D

mul: > A X,y <L XYy >
print: >\l x: < print x >
X: -2
square: > |\ x: mul(x, x)
T {-8 Aximul(x, x) (Ax,y:<zxy> (—2,5))’

e Evaluating subexpressions x, mul, and square takes values from the
expression's environment.

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 9

Evaluating User-Defined Functions Calls (IIT)

e Then call the multiply function. Since this is primitive, let's just use
the substitution model:

mul: P > AX YL T XY >
|'3'r'.in’r: > Al x: < print x >
x: -2
édﬁare: » |\ x: mul(x, x)
T {-e AXx:mul(x, x) (€ —2x5>) }

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 10

Evaluating User-Defined Functions Calls (IV)

e Execute the primitive operation:

mul: P > AX, Y LT XY >
|'9'r.in‘r: > Al xi < print x >
5 >
édhare: » |\ x: mul(x, x)

T % A x: mul(x, x)| (-10) }

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 11

Evaluating User-Defined Functions Calls (V)

e To evaluate the call o the user-defined function (square), start a
new evaluation in a new local environment frame, attached to the
frame where square was defined (the global frame here), and giving
X the operand value.

O
mul: > AX, Y LT XY >
|.:>'r'in’r: » Al x: < print x>
= H
édﬁara: » |\ x: mul(x, x)
11
{-B A x: mul(x, x)| (-10) }
x: -10
< {) mul(x, x) }

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 12

Evaluating User-Defined Functions Calls (VI)

e When we evaluate mul(x, x) in this new environment, we get the same
value as before for mul, but the local value for x.

©
mul: > AX, Y LT XYy >
|'3'r"in’r: » Al x: < print x >
x: -2
édﬁare: » |\ x: mul(x, x)
11
J{) A x: mul(x, x)| (-10) }
x. -10
< %)\x,y:<<x><y_>> (-10], |-10) }

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 13

Evaluating User-Defined Functions Calls (VII)

e Evaluate the primitive multiplication as before:

O
mul: > AX, Y LT XYy >
|.:>'r'in’r: > Al x: < print x>
= >
édﬁare: » |\ x: mul(x, x)
11
{.e A x: mul(x, x)| (-10) }
x: -10
< {-} < =10 x —10>> }

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 14

Evaluating User-Defined Functions Calls (VIIT)

e And return the finished value. ..

O
mul: > AX, Y LT XYy >
|.:>'r'in’r: > Al x: < print x>
= H
édﬁare: » |\ x: mul(x, x)
11
{.e A x: mul(x, x)| (-10) }
x. -10 0)

< {.B 100 }

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 15

Evaluating User-Defined Functions Calls (IX)

e ...replacing the call to the user-defined function and yielding the
final value:

mul: P > AX, Y LT XY>
.p'r'in‘r: » Al x: < print x >
x: -2

Sdﬁara: » |\ x: mul(x, x)

A T {> 106 }

x. -10 0

« {> 100 }

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 16

Summary: Environments

e Environments map hames to values.
e They consist of chains of environment frames.

e An environment is either a global frame or a first (local) frame
chained to a parent environment (which is itself either a global frame
or...).

e We say that a name is bound to a value in a frame.

e The value (or meaning) of a name in an environment is the value it is
bound to in the first frame, if there is one, ...

e ...or if not, the meaning of the name in the parent environment

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 17

A Sample Environment Chain

Environ. 2 r----------ooooe Value of
| EREESEELSEEESEES - In X |y
| © Global 1|12
; oo muk Environ 1. | 2 | 12
Global --------- X Ly Environ 2. 3 | 12
! ! Y. 12 !
Environ. 1 -~ 4 BN
| E - Environ. I's parent
® -
X 2| 4 Environ. I's first frame
L A i
- Environ. 2's parent
O, |
X: 3|« Environ. 2's first frame

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 18

Environments: Binding and Evaluation

e Every expression and statement is evaluated (executed) in an envi-
ronment, which determines the meaning of its names.

e Subexpressions (pieces) of an expression are evaluated in the same
environment as the expression

e Assigning to a variable binds a value to it in (for now) the first frame
of the environment in which the assignment is executed.

e Def statements bind a name to a function value in the first frame
of the environment in which the def statement is executed.

e Calling a user-defined function creates a new local environment and
binds the operand values in the call to the parameter names in that
environment.

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 19

Example: Evaluation of a Call: sum square(3,4)

)

» \ X: return x*x

square:

mul, abs. ..

sum_square:

A A

A X, y: return square(x)+square(y)

25

A

é sum square(3,4) J

A 4—@@ squc/x/r;s(x)+squgf'\e\(y) J

b
-
s

16

square(3) J A 4—% square(4) J

Last modified: Mon Mar 3 01:54:56 2014

é@ X*x J B<—é X* X]

CS61A: Lecture #3 20

	Lecture #3: Environments
	Names
	Environments
	Evaluation of Names
	Evaluation of Names (II)
	Evaluation of Names: More Complicated Environments
	More Complicated Environments (II)
	Evaluating User-Defined Function Calls
	Evaluating User-Defined Function Calls (II)
	Evaluating User-Defined Functions Calls (III)
	Evaluating User-Defined Functions Calls (IV)
	Evaluating User-Defined Functions Calls (V)
	Evaluating User-Defined Functions Calls (VI)
	Evaluating User-Defined Functions Calls (VII)
	Evaluating User-Defined Functions Calls (VIII)
	Evaluating User-Defined Functions Calls (IX)
	Summary: Environments
	A Sample Environment Chain
	Environments: Binding and Evaluation
	Example: Evaluation of a Call: sum_square(3,4)

