
Lecture #4: Control

• The expressions we’ve dealt with recently evaluate all of their operands
in order.

• While there are very clever ways to do everything with just this
[challenge!], it’s generally clearer to introduce constructs that con-
trol the order in which their components execute.

• A control expression evaluates some or all of its operands in an order
depending on the kind of expression, and typically on the values of
those operands.

• A statement is a construct that produces no value (not even None,
but is used solely for its side effects.

• A control statement is a statement that, like a control expression,
evaluates some or all of its components, in an order that may depend
on the these components.

• We typically speak of statements being executed rather than eval-
uated, but the two concepts are essentially the same, apart from
the question of a value.

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #4 1

Conditional Expressions (I)

• The most common kind of control is conditional evalutation (execu-
tion).

• In Python, to evaluate

TruePart if Condition else FalsePart

– First evaluate Condition.

– If the result is a “true value,” evaluate TruePart; its value is then
the value of the whole expression.

– Otherwise, evaluate FalsePart; its value is then the value of the
whole expression.

• Example: If x is 2:

1 / x if x != 0 else 1
1 / x if 2 != 0 else 1
=⇒ 1 / x if True else 1
=⇒ 1 / x
=⇒ 1 / 2
=⇒ 0.5

If x is 0:

1 / x if x != 0 else 1
1 / x if 0 != 0 else 1
=⇒ 1 / x if False else 1
=⇒ 1
=⇒ 1

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #4 2

“True Values”

• Conditions in conditional constructs can have any value, not just True
or False.

• For convenience, Python treats a number of values as indicating
“false”:

– False

– None

– 0

– Empty strings, sets, lists, tuples, and dictionaries.

• All else is a “true value” by default.

• So, for example: 13 if 0 else 5 and 13 if [] else 5 both evaluate to
5.

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #4 3

Conditional Expressions (II)

• To evaluate

Left and Right

– Evaluate Left.

– If it is a false value, that becomes the value of the whole expres-
sion.

– Otherwise the value of the expression is that of Right.

• This is an example of something called “short-circuit evaluation.”

• For example,

5 and "Hello" =⇒ .

0 and print(6) =⇒ + side-effects: .

[] and 1 / 0 =⇒ .

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #4 4

Conditional Expressions (II)

• To evaluate

Left and Right

– Evaluate Left.

– If it is a false value, that becomes the value of the whole expres-
sion.

– Otherwise the value of the expression is that of Right.

• This is an example of something called “short-circuit evaluation.”

• For example,

5 and "Hello" =⇒ "Hello" .

0 and print(6) =⇒ + side-effects: .

[] and 1 / 0 =⇒ .

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #4 4

Conditional Expressions (II)

• To evaluate

Left and Right

– Evaluate Left.

– If it is a false value, that becomes the value of the whole expres-
sion.

– Otherwise the value of the expression is that of Right.

• This is an example of something called “short-circuit evaluation.”

• For example,

5 and "Hello" =⇒ "Hello" .

0 and print(6) =⇒ 0 + side-effects: None.

[] and 1 / 0 =⇒ .

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #4 4

Conditional Expressions (II)

• To evaluate

Left and Right

– Evaluate Left.

– If it is a false value, that becomes the value of the whole expres-
sion.

– Otherwise the value of the expression is that of Right.

• This is an example of something called “short-circuit evaluation.”

• For example,

5 and "Hello" =⇒ "Hello" .

0 and print(6) =⇒ 0 + side-effects: None.

[] and 1 / 0 =⇒ [] .

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #4 4

Conditional Expressions (III)

• To evaluate

Left or Right

– Evaluate Left.

– If it is a true value, that becomes the value of the whole expres-
sion.

– Otherwise the value of the expression is that of Right.

• Another example of “short-circuit evaluation.”

• For example,

5 or "Hello" =⇒ .

2 or print(6) =⇒ + side-effects: .

[] or 1 / 0 =⇒ .

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #4 5

Conditional Expressions (III)

• To evaluate

Left or Right

– Evaluate Left.

– If it is a true value, that becomes the value of the whole expres-
sion.

– Otherwise the value of the expression is that of Right.

• Another example of “short-circuit evaluation.”

• For example,

5 or "Hello" =⇒ 5 .

2 or print(6) =⇒ + side-effects: .

[] or 1 / 0 =⇒ .

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #4 5

Conditional Expressions (III)

• To evaluate

Left or Right

– Evaluate Left.

– If it is a true value, that becomes the value of the whole expres-
sion.

– Otherwise the value of the expression is that of Right.

• Another example of “short-circuit evaluation.”

• For example,

5 or "Hello" =⇒ 5 .

2 or print(6) =⇒ 2 + side-effects: None.

[] or 1 / 0 =⇒ .

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #4 5

Conditional Expressions (III)

• To evaluate

Left or Right

– Evaluate Left.

– If it is a true value, that becomes the value of the whole expres-
sion.

– Otherwise the value of the expression is that of Right.

• Another example of “short-circuit evaluation.”

• For example,

5 or "Hello" =⇒ 5 .

2 or print(6) =⇒ 2 + side-effects: None.

[] or 1 / 0 =⇒ error .

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #4 5

Chained Comparisons

• An interesting feature of Python (quite rare; Cobol has something
like it) involves the relational operators:

== != < > <= >= is is not in not in

• Ordinarily, 3<4 yields True and 4<3 yields False.

• But what does 4 >= 3 > 1 produce? In Java, it’s an error, and in C, it
doesn’t do what you probably want.

• In Python, it’s a special control expression and works as expected.

• To evaluate First > Second >= Third, for example,

– Evaluate First and Second.

– If the first value is not larger than the second, stop and yield
False for the entire expression.

– Otherwise, compute the value of Third and compare against the
value previously computed for Second, and yield True or False as
appropriate.

– In any case, no expression is evaluated more than once.

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #4 6

Chained Comparisons (II)

• So what is

(print("A") or 3) < (print("B") or 2) < (print("C") or 4)

and what does it print?

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #4 7

Chained Comparisons (II)

• So what is

(print("A") or 3) < (print("B") or 2) < (print("C") or 4)

and what does it print?

• Prints A and B, evaluates to False.

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #4 7

Conditional Statement

• Finally, this all comes in statement form:

if Condition1:
Statements1
...

elif Condition2:
Statements2
...

...
else:

Statementsn
...

• Execute (only) Statements1 if Condition1 evaluates to a true value.

• Otherwise execute Statements2 if Condition2 evaluates to a true
value (optional part).

• . . .

• Otherwise execute Statementsn (optional part).

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #4 8

Example

Alternative Definition

def signum(x): def signum(x):

if x > 0: return 1 if x > 0 else 0 if x == 0 else -1

return 1

elif x == 0:

return 0

else:

return -1

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #4 9

A Puzzle: Define compare3

What goes here?

from operator import lt, gt # Comparison functions

gt(gt(3,2), 1) # Yields False, not like 3>2>1 (why?)

compare3(gt)(3)(2)(1) # This should yield True

compare3(gt)(3)(2)(4) # This should yield False

compare3(lt)(1)(2)(3) # This should yield True

etc.

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #4 10

Some Solutions

def compare3(op):

def f(a):

def g(b):

return lambda c: op(a,b) and op(b, c)

return g

return f

def compare3(op):

def f(a):

def g(b):

if op(a,b):

return lambda c: op(b, c)

else:

return lambda c: False

return g

return f

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #4 11

Indefinite Repetition

• With conditionals and function calls, we can conduct computations
of any length.

• For example, to sum the squares of all numbers from 1 to N (a pa-
rameter):

def sum_squares(N):

"""The sum of K**2 for K from 1 to N (inclusive)."""

if N < 1:

return 0

else:

return N**2 + sum_squares(N - 1)

• This will repeatedly call sum squares with decreasing values (down
to 1), adding in squares:

sum_squares(3) => 3**2 + sum_squares(2)

=> 3**2 + (2**2 + sum_squares(1))

=> 3**2 + (2**2 + (1**2 + sum_squares(0)))

=> 3**2 + (2**2 + (1**2 + 0)) => 14

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #4 12

Explicit Repetition

• But in the Python, C, Java, and Fortran communities, it is more usual
to be explicit about the repetition.

• The simplest form is while

while Condition:
Statements

means “If condition evaluates to a true value, execute statements
and repeat the entire process. Otherwise, do nothing.”

• So our sum-of-squares becomes:

def sum_squares(N):

"""The sum of K**2 for K from 1 to N (inclusive)."""

result = 0

while N >= 1:

result += N**2 # Or result = result + N**2

N -= 1 # Or N = N-1

return result

• (Actually, this isn’t quite right. What’s different from the first
version?)

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #4 13

Going Backwards

• OK: I cheated. In the recursive version, you actually add up the
squares starting from the small end.

• So to be true to the original, I would write:

def sum_squares(N):

"""The sum of K**2 for K from 1 to N (inclusive)."""

result = 0

k = 1

while k <= N:

result += k**2

k += 1

return result

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #4 14

Definite Repetition

• In most programming languages, we write “counting loops” like the
preceding with a specialized kind of loop. In Python:

def sum_squares(N):

"""The sum of K**2 for K from 1 to N (inclusive)."""

result = 0

Original:

k = 1

while k <= N:

result += k**2

k += 1

for k in range(1, N+1):

result += k**2

return result

• This actually means “execute result += k**2 for every value of k
in the range 1 (inclusive) to N+1 (exclusive).”

• Special case of a more general version that we’ll see later.

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #4 15

	Lecture #4: Control
	Conditional Expressions (I)
	``True Values''
	Conditional Expressions (II)
	Conditional Expressions (III)
	Chained Comparisons
	Chained Comparisons (II)
	Conditional Statement
	Example
	A Puzzle: Define compare3
	Some Solutions
	Indefinite Repetition
	Explicit Repetition
	Going Backwards
	Definite Repetition

