
Lecture #5: Higher-Order Functions

Announcements:

• Make sure that you have registered electronically with our system
(not just TeleBEARS).

• Attend a discussion/lab in which you can fit; don’t worry about Tele-
BEARS lab/discussion time once it allows you to register.

• Concurrent enrollment students should all get in (once fees are paid,
that is).

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 1

A Simple Recursion

• The Fibonacci sequence is defined

Fk =















k, for k = 0, 1
Fk−2 + Fk−1, for k > 1

• . . . which translates easily into Python:

def fib(n):

"""The Nth Fibonacci number, N>=0."""

assert n >= 0

if n <= 1:

return n

else:

return fib(n-2) + fib(n-1)

• This definition works, but why is it so slow?

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 2

Redundant Calculation

• Consider the computation of fib(10).

• This calls fib(9) and fib(8), but then fib(9) calls fib(8) again and
both fib(9) and the two calls to fib(8) call fib(7), so that fib(7) is
called 3 times.

• Likewise, fib(6) is called 5 times, fib(7) is called 8 times, and so
forth in increasing Fibonacci sequence, interestingly enough.

• Therefore, the time required (proportional to the number of calls)
grows exponentially:

• As it turns out, fib(N) requires time roughly proportional to ΦN ,
where the golden ratio Φ = (1 +

√
5)/2.

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 3

Avoiding Recalculation

• To compute the next Fibonacci number, we need the preceding two.

• Let’s generalize and consider what it takes to compute N more:

def fib2(fk1, fk, k, n):

"""Assuming FK1 and FK F[K-1] and F[K] in the Fibonacci

sequence numbers and N>=K, return F[N]."""

if n == k:

return fk

else:

return

def fib(n):

if n <= 1:

return n

else:

return fib2(0, 1, 1, n)

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 4

Avoiding Recalculation

• To compute the next Fibonacci number, we need the preceding two.

• Let’s generalize and consider what it takes to compute N more:

def fib2(fk1, fk, k, n):

"""Assuming FK1 and FK F[K-1] and F[K] in the Fibonacci

sequence numbers and N>=K, return F[N]."""

if n == k:

return fk

else:

return fib2(fk, fk1+fk, k+1, n)

def fib(n):

if n <= 1:

return n

else:

return fib2(0, 1, 1, n)

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 4

Tail Recursion and Repetition

• In this last version, whenever fib2 is called recursively, the value of
that call is immediately returned.

• This property is called tail recursion.

def fib2(fk1, fk, k, n):

if n == k: return fk

else: return fib2(fk, fk1+fk, k+1, n)

def fib(n):

if n <= 1: return n

else: return fib2(0, 1, 1, n)

• It is this sort of process that is easily expressed as an iteration.

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 5

Explicit Iteration

• In the Python, C, Java, and Fortran communities, it is more usual to
be explicit about repetition, rather than using tail recursion.

• The simplest form is while

while Condition:
Statements

means “If condition evaluates to a true value, execute statements
and repeat the entire process. Otherwise, do nothing.”

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 6

Explicit Iteration in fib

• Original version, again:

def fib2(fk1, fk, k, n):

if n == k: return fk

else: return fib2(fk, fk1+fk, k+1, n)

def fib(n):

if n <= 1: return n

else: return fib2(0, 1, 1, n)

• As an explicit iteration:

def fib(n):

if n <= 1: return n

fk1, fk, k = 0, 1, 1

while n != k:

fk1, fk, k = fk, fk1+fk, k+1

return fk

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 7

Nested Functions

• In the last recursive version, fib2 function is an auxiliary function,
used only by fib.

• It makes sense to tuck it away inside fib, like this:

def fib(n):

def fib2(fk1, fk, k):

if n == k: return fk

else: return fib2(fk, fk1+fk, k+1)

if n <= 1: return n

else: return fib2(0, 1, 1)

• I’ve taken the liberty here of removing the parameter n from fib2:
it’s always the same as the outer n and never changes.

• But to explain how this works, we’ll have to extend the environment
model just a bit.

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 8

Nested Functions and Environments

G

fib: λ n: . . .

A
n: 2
fib2: λ fk1, fk, k: . . .

fk1: 1
fk: 1
k: 2 fk1: 0

fk: 1
k: 1

fib(2)
1

. . . fib2(0,1,1)

. . . fib2(fk, fk1+fk, k+1)

. . . fib2(fk, fk1+fk, k+1)

G

A

Defining
Environments

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 9

Defining Environments

• Each function value is attached to the environment frame in which
the def statement that created it was evaluated.

• Since the def for fib was evaluated in the global frame, the result-
ing function value bound to fib is attached to the global frame.

• Since the def for fib2 was evaluated in the local frame of an exe-
cution of fib, the resulting function value is attached to that local
frame.

• When a user-defined function value is called, the local frame that
is created for that call is attached to the defining frame of the
function.

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 10

Do You Understand the Machinery? (I)

What is printed (0, 1, or error) and why?

def f():

return 0

def g():

print(f())

def h():

def f():

return 1

g()

h()

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 11

Answer (I)

The program prints 0. At the point that f is called, we are in the
situation shown below:

G

f:

g:

h:

λ : return 0

λ : body of g

λ : body of h

A: h

f: λ : return 1

B: g
h()

g()

f()

G

A

B

So we evaluate f in an environment (B) where it is bound to a function
that returns 0. (B: g means that frame B was created to execute a call
to g).

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 12

Do You Understand the Machinery? (II)

What is printed (0, 1, or error) and why?

def f():

return 0

g = f

def f():

return 1

print(g())

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 13

Answer (II)

The program prints 0 again:

G

g:

f: λ : return 0

λ : return 1

g()

At the time we evaluate f to assign it to g, it has the value indicated
by the crossed-out dotted line, so that is the value g gets. The fact
that we change f’s value later is irrelevant, just as x = 3; y = x; x = 4;
print(y) prints 3 evan though x changes: y doesn’t remember where its
value came from.

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 14

Do You Understand the Machinery? (III)

What is printed (0, 1, or error) and why?

def f():

return 0

def g():

print(f())

def f():

return 1

g()

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 15

Answer (III)

This time, the program prints 1. When g is executed, it evaluates the
name ‘f’. At the time that happens, f’s value has been changed (by the
third def), and that new value is therefore the one the program uses.

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 16

Functions As Templates

• If we think of a function body as a template for a computation,
parameters are “blanks” in that template.

• For example:

def sum_squares(N):

k, sum = 0, 0

while k <= N:

sum, k = sum+k**2, k+1

return sum

is a template for an infinite set of computations that add squares
of numbers up to 0, 1, 2, 3, . . . , in place of the N.

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 17

Functions on Functions

• Likewise, function parameters allow us to have templates with slots
for computations:

def summation(N, f):

k, sum = 1, 0

while k <= N:

sum, k = sum+f(k), k+1

return sum

• Generalizes sum squares. We can write sum squares(5) as:

def square(x): return x*x

summation(5, square)

• or (if we don’t really need a “square” function elsewhere), we can
create the function argument anonymously on the fly:

summation(5, lambda x: x*x)

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 18

Functions that Produce Functions

• Functions are first-class values, meaning that we can assign them to
variables, pass them to functions, and return them from functions.

• Example:

def add_func(f, g):

"""Return function that returns f(x)+g(x) for argument x."""

def adder(x): #

return f(x) + g(x) # or return lambda x: f(x) + g(x)

return adder #

h = add_func(abs, lambda x: -x)

>>> print(h(-5))

10

• Generalize the example:

def combine_funcs(op, f, g):

return

Now add_func =

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 19

Functions that Produce Functions

• Functions are first-class values, meaning that we can assign them to
variables, pass them to functions, and return them from functions.

• Example:

def add_func(f, g):

"""Return function that returns f(x)+g(x) for argument x."""

def adder(x): #

return f(x) + g(x) # or return lambda x: f(x) + g(x)

return adder #

h = add_func(abs, lambda x: -x)

>>> print(h(-5))

10

• Generalize the example:

def combine_funcs(op, f, g):

return lambda x: op(f(x), g(x))

Now add_func =

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 19

Functions that Produce Functions

• Functions are first-class values, meaning that we can assign them to
variables, pass them to functions, and return them from functions.

• Example:

def add_func(f, g):

"""Return function that returns f(x)+g(x) for argument x."""

def adder(x): #

return f(x) + g(x) # or return lambda x: f(x) + g(x)

return adder #

h = add_func(abs, lambda x: -x)

>>> print(h(-5))

10

• Generalize the example:

def combine_funcs(op, f, g):

return lambda x: op(f(x), g(x))

Now add_func = lambda f, g: combine funcs(sum, f, g)

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 19

Do You Understand the Machinery? (IV)

What is printed: (1, infinite loop, or error) and why?

def g(x):

print(x)

def f(f):

f(1)

f(g)

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 20

Answer (IV)

This prints 1. When we reach f(1) inside f, the call expression, and
therefore the name f, evaluated in the environment E, where the value
of f is the global function bound to g:

g:

f:

λ! x: print(x)

λ! f: f(1)

E

f:

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 21

An Aside: Notations

• To introduce environments, I used arrows to indicate connections
between boxes to show these relationships graphically.

• But for serious use, that notation gets cluttered rapidly.

• Also, the Python Tutor software does not use it, favoring textual
labels instead.

• There is a link to our official rules for building environment diagrams
with the Python tutor notation on the class web page:

https://inst.eecs.berkeley.edu/ cs61a/sp14/pdfs/environment-diagrams.pdf

• For these lectures, I’ll generally use the more explicit style (with
arrows linking frames) to show everything graphically, but we’ll use
the more compact Python tutor style for homework and tests.

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 22

https://inst.eecs.berkeley.edu/~cs61a/sp14/pdfs/environment-diagrams.pdf

Example of the Notations

Consider the following program, which will print 1:

def f():

return 0

def g(f):

print(f())

def h():

def f():

return 1

g(f)

h()

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 23

Example, contd: Lecture notation and Python Tutor
notation

G

f:

g:

h:

λ : return 0

λ : body of g

λ : body of h

A: h

f: λ : return 1

B: g

C: f

Global frame

f

g

h

func f()

func g(f)

func h()

f1: h

f func f() [parent: f1]

g

f

f [parent f1]

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 24

Do You Understand the Machinery? (V)

What is printed: (0, 1, or error) and why?

def f():

return 0

def g():

return f()

def h(k):

def f():

return 1

p = k

return p()

print(h(g))

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 25

Answer (V)

This prints 0. Function values are attached to current environments
when they are first created (by lambda or def). Assignments (such as
to p) don’t themselves create new values, but only copy old ones, so
that when p is evaluated, it is equal to k, which is equal to g, which is
attached to the global environment.

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 26

Observation: Environments Reflect Nesting

• From what we’ve seen so far:

Linking of environment frames ⇐⇒ Nesting of definitions.

• For example, given

def f(x):

def g(x):

def h(x):

print(x)

...

...

The structure of the program tells you that the environment in
which print(x) is evaluated will always be a chain of 4 frames:

Frame for h =⇒ Frame for g =⇒ Frame for f =⇒ Global frame.

• However, when there are multiple local frames for a particular func-
tion lying around, environment diagrams can help sort them out.

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 27

Do You Understand the Machinery? (VI)

What is printed: (0, 1, or error) and why?

def f(p, k):

def g():

print(k)

if k == 0:

f(g, 1)

else:

p()

f(None, 0)

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 28

Answer (VI)

This prints 0. There are two local frames for f when p() is called. In
the first one, k is 0; in the second, it is 1. When p() is called, its value
comes from the value of g that was created in the first frame, where
k is 0.

Last modified: Mon Mar 3 01:54:55 2014 CS61A: Lecture #5 29

	Lecture #5: Higher-Order Functions
	A Simple Recursion
	Redundant Calculation
	Avoiding Recalculation
	Tail Recursion and Repetition
	Explicit Iteration
	Explicit Iteration in fib
	Nested Functions
	Nested Functions and Environments
	Defining Environments
	Do You Understand the Machinery? (I)
	Answer (I)
	Do You Understand the Machinery? (II)
	Answer (II)
	Do You Understand the Machinery? (III)
	Answer (III)
	Functions As Templates
	Functions on Functions
	Functions that Produce Functions
	Do You Understand the Machinery? (IV)
	Answer (IV)
	An Aside: Notations
	Example of the Notations
	Example, contd: Lecture notation and Python Tutor notation
	Do You Understand the Machinery? (V)
	Answer (V)
	Observation: Environments Reflect Nesting
	Do You Understand the Machinery? (VI)
	Answer (VI)

