
Lecture #6: Higher-Order Functions at Work

Announcents:

• Free drop-in tutoring from HKN, the EECS honor society. Week-
days 11am-5pm 345 Soda or 290 Cory. For more information see
hkn.eecs.berkeley.edu.

• A message from the AWE:

“The Association of Women in EECS is hosting a 61A party
this Sunday (2/9) from 1–3PM in the Woz! Come hang out,
befriend other girls in 61A and meet AWE members who have
taken it before! There will be lots of food, games, and fun!”

• Hog project released last Friday. Don’t miss it!

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 1

hkn.eecs.berkeley.edu

Iterative Update

• A general strategy for solving an equation:

Guess a solution

while your guess isn’t good enough :

update your guess

• The three boxed segments are parameters to the process.

• The last two segments clearly require functions for their representation—
a predicate function (returning true/false values), and a function
from values to values.

• In code,

def iter_solve(guess, done, update):

"""Return the result of repeatedly applying UPDATE,

starting at GUESS, until DONE yields a true value

when applied to the result. UPDATE takes a guees

and returns an updated guess."""

What goes here?

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 2

Recursive Version (I)

def iter_solve(guess, done, update):

"""Return the result of repeatedly applying UPDATE,

starting at GUESS, until DONE yields a true value

when applied to the result. UPDATE takes a guees

and returns an updated guess."""

if

return

else:

return

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 3

Recursive Version (I)

def iter_solve(guess, done, update):

"""Return the result of repeatedly applying UPDATE,

starting at GUESS, until DONE yields a true value

when applied to the result. UPDATE takes a guees

and returns an updated guess."""

if done(guess)

return

else:

return

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 3

Recursive Version (I)

def iter_solve(guess, done, update):

"""Return the result of repeatedly applying UPDATE,

starting at GUESS, until DONE yields a true value

when applied to the result. UPDATE takes a guees

and returns an updated guess."""

if done(guess)

return guess

else:

return

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 3

Recursive Version (I)

def iter_solve(guess, done, update):

"""Return the result of repeatedly applying UPDATE,

starting at GUESS, until DONE yields a true value

when applied to the result. UPDATE takes a guees

and returns an updated guess."""

if done(guess)

return guess

else:

return iter_solve(update(guess), done, update)

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 3

Recursive Version (II)

def iter_solve(guess, done, update):

"""Return the result of repeatedly applying UPDATE,

starting at GUESS, until DONE yields a true value

when applied to the result. UPDATE takes a guees

and returns an updated guess."""

def solution(guess):

if :

return

else:

return

return solution(guess)

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 4

Recursive Version (II)

def iter_solve(guess, done, update):

"""Return the result of repeatedly applying UPDATE,

starting at GUESS, until DONE yields a true value

when applied to the result. UPDATE takes a guees

and returns an updated guess."""

def solution(guess):

if done(guess):

return

else:

return

return solution(guess)

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 4

Recursive Version (II)

def iter_solve(guess, done, update):

"""Return the result of repeatedly applying UPDATE,

starting at GUESS, until DONE yields a true value

when applied to the result. UPDATE takes a guees

and returns an updated guess."""

def solution(guess):

if done(guess):

return guess

else:

return

return solution(guess)

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 4

Recursive Version (II)

def iter_solve(guess, done, update):

"""Return the result of repeatedly applying UPDATE,

starting at GUESS, until DONE yields a true value

when applied to the result. UPDATE takes a guees

and returns an updated guess."""

def solution(guess):

if done(guess):

return guess

else:

return solution(update(guess))

return solution(guess)

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 4

Iterative Version

def iter_solve(guess, done, update):

"""Return the result of repeatedly applying UPDATE,

starting at GUESS, until DONE yields a true value

when applied to the result. UPDATE takes a guees

and returns an updated guess."""

while :

return

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 5

Iterative Version

def iter_solve(guess, done, update):

"""Return the result of repeatedly applying UPDATE,

starting at GUESS, until DONE yields a true value

when applied to the result. UPDATE takes a guees

and returns an updated guess."""

while not done(guess):

return

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 5

Iterative Version

def iter_solve(guess, done, update):

"""Return the result of repeatedly applying UPDATE,

starting at GUESS, until DONE yields a true value

when applied to the result. UPDATE takes a guees

and returns an updated guess."""

while not done(guess):

guess = update(guess)

return

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 5

Iterative Version

def iter_solve(guess, done, update):

"""Return the result of repeatedly applying UPDATE,

starting at GUESS, until DONE yields a true value

when applied to the result. UPDATE takes a guees

and returns an updated guess."""

while not done(guess):

guess = update(guess)

return guess

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 5

Adding a Safety Net

• In real life, we might want to make sure that the function doesn’t
just loop forever, getting no closer to a solution.

def iter_solve(guess, done, update, iteration_limit=32):

"""Return the result of repeatedly applying UPDATE,

starting at GUESS, until DONE yields a true value

when applied to the result. Causes error if more than

ITERATION_LIMIT applications of UPDATE are necessary."""

def solution(guess, iteration_limit):

if done(guess):

return guess

elif :

raise ValueError("failed to converge")

else:

return solution(update(guess),)

return solution(guess, iteration_limit)

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 6

Adding a Safety Net

• In real life, we might want to make sure that the function doesn’t
just loop forever, getting no closer to a solution.

def iter_solve(guess, done, update, iteration_limit=32):

"""Return the result of repeatedly applying UPDATE,

starting at GUESS, until DONE yields a true value

when applied to the result. Causes error if more than

ITERATION_LIMIT applications of UPDATE are necessary."""

def solution(guess, iteration_limit):

if done(guess):

return guess

elif iteration_limit <= 0:

raise ValueError("failed to converge")

else:

return solution(update(guess),)

return solution(guess, iteration_limit)

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 6

Adding a Safety Net

• In real life, we might want to make sure that the function doesn’t
just loop forever, getting no closer to a solution.

def iter_solve(guess, done, update, iteration_limit=32):

"""Return the result of repeatedly applying UPDATE,

starting at GUESS, until DONE yields a true value

when applied to the result. Causes error if more than

ITERATION_LIMIT applications of UPDATE are necessary."""

def solution(guess, iteration_limit):

if done(guess):

return guess

elif iteration_limit <= 0:

raise ValueError("failed to converge")

else:

return solution(update(guess), iteration_limit-1)

return solution(guess, iteration_limit)

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 6

Iterative Version with Safety Net.

def iter_solve(guess, done, update, iteration_limit=32):

"""Return the result of repeatedly applying UPDATE,

starting at GUESS, until DONE yields a true value

when applied to the result. Causes error if more than

ITERATION_LIMIT applications of UPDATE are necessary."""

while not done(guess):

if iteration_limit <= 0:

raise ValueError("failed to converge")

guess, iteration_limit = update(guess), iteration_limit-1

return guess

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 7

Using Iterative Solving For Newton’s Method

• Newton’s method (aka the Newton-Raphson method) is a general
numerical technique for finding approximate solutions to f(x) = 0,
given the function f , its derivative f ′, and an initial guess, x0. It pro-
duces a result to some desired tolerance (that is, to some definition
of “close enough”).

• See http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

• Given a guess, xk, compute the next guess, xk+1 by

xk+1 = xk −
f(xk)

f ′(xk)

def newton_solve(func, deriv, start, tolerance):

"""Return x such that |FUNC(x)| < TOLERANCE, given initial

estimate START, assuming DERIV is the derivatative of FUNC."""

def close_enough(x):

def newton_update(x):

return iter_solve(start, close_enough, newton_update)

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 8

http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

Using Iterative Solving For Newton’s Method

• Newton’s method (aka the Newton-Raphson method) is a general
numerical technique for finding approximate solutions to f(x) = 0,
given the function f , its derivative f ′, and an initial guess, x0. It pro-
duces a result to some desired tolerance (that is, to some definition
of “close enough”).

• See http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

• Given a guess, xk, compute the next guess, xk+1 by

xk+1 = xk −
f(xk)

f ′(xk)

def newton_solve(func, deriv, start, tolerance):

"""Return x such that |FUNC(x)| < TOLERANCE, given initial

estimate START, assuming DERIV is the derivatative of FUNC."""

def close_enough(x):

return abs(func(x)) < tolerance

def newton_update(x):

return iter_solve(start, close_enough, newton_update)

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 8

http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

Using Iterative Solving For Newton’s Method

• Newton’s method (aka the Newton-Raphson method) is a general
numerical technique for finding approximate solutions to f(x) = 0,
given the function f , its derivative f ′, and an initial guess, x0. It pro-
duces a result to some desired tolerance (that is, to some definition
of “close enough”).

• See http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

• Given a guess, xk, compute the next guess, xk+1 by

xk+1 = xk −
f(xk)

f ′(xk)

def newton_solve(func, deriv, start, tolerance):

"""Return x such that |FUNC(x)| < TOLERANCE, given initial

estimate START, assuming DERIV is the derivatative of FUNC."""

def close_enough(x):

return abs(func(x)) < tolerance

def newton_update(x):

return x - func(x) / deriv(x)

return iter_solve(start, close_enough, newton_update)

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 8

http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

Using newton solve for
√
· and 3

√
·

def square_root(a):

if a < 0:

raise ValueError("square root of negative value")

return newton_solve(lambda x: x*x - a, lambda x: 2 * x,

a/2, a * 1e-10)

def cube_root(a):

return newton_solve(lambda x: x**3 - a, lambda x: 3 * x ** 2,

a/3, a * 1e-10)

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 9

Dispensing With Derivatives

• What if we just want to work with a function, without knowing its
derivative?

• Book uses an approximation:

def find_root(func, start=1, tolerance=1e-5):

def approx_deriv(f, delta = 1e-5):

return lambda x: (func(x + delta) - func(x)) / delta

return newton_solve(func, approx_deriv(func), start, tolerance)

• This is nice enough, but looks a little ad hoc (how did I pick delta?).

• Another alternative is the secant method.

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 10

The Secant Method

• Newton’s method was

xk+1 = xk −
f(x)

f ′(x)

• The secant method uses that last two values to get (in effect) a
replacement for the derivative:

xk+1 = xk − f(xk)
xk − xk−1

f(xk) − f(xk−1)

• See http://en.wikipedia.org/wiki/File:Secant_method.svg

• But this is a problem for us: so far, we’ve only fed the update func-
tion the value of xk each time. Here we also need xk−1.

• How do we generalize to allow arbitrary extra data (not just xk−1)?

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 11

http://en.wikipedia.org/wiki/File:Secant_method.svg

Generalized iter solve

def iter_solve2(guess, done, update, state=None):

"""Return the result of repeatedly applying UPDATE to GUESS

and STATE, until DONE yields a true value when applied to

GUESS and STATE. UPDATE returns an updated guess and state."""

while not done(guess, state):

guess, state = update(guess, state)

return guess

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 12

Using Generalized iter solve2 for the Secant Method

The secant method:

xk+1 = xk − f(xk)
xk − xk−1

f(xk) − f(xk−1)

def secant_solve(func, start0, start1, tolerance):

"""An approximate solution to FUNC(x) == 0 for which

|FUNC(x)|<TOLERANCE, as computed by the secant method

beginning at points START0 and START1."""

def close_enough(x, state):

return abs(func(x)) < tolerance

def secant_update(xk, xk1):

return (xk - func(xk) * (xk - xk1)

/ (func(xk) - func(xk1)),

xk)

return iter_solve2(start1, close_enough, secant_update, start0)

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 13

Secant Method Applied to Square Root

def square_root2(x):

"""An approximation to the square root of X,

using the secant method.

>>> round(square_root2(9), 10)

3.0

"""

if x < 0:

raise ValueError("square root of negative value")

return secant_solve(lambda y: y*y - x,

1, 0.5 * (x + 1),

x * 1.0e-10)

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 14

	Lecture #6: Higher-Order Functions at Work
	Iterative Update
	Recursive Version (I)
	Recursive Version (II)
	Iterative Version
	Adding a Safety Net
	Iterative Version with Safety Net.
	Using Iterative Solving For Newton's Method
	Using newton_solve for and [3]
	Dispensing With Derivatives
	The Secant Method
	Generalized iter_solve
	Using Generalized iter_solve2 for the Secant Method
	Secant Method Applied to Square Root

