Lecture #7: Recursion (and a data structure)

Announcements:
e A message from the AWE:

"The Association of Women in EECS is hosting a 61A party
this Sunday (2/9) from 1-3PM in the Woz! Come hang out,
befriend other girls in 61A and meet AWE members who have
taken it beforel There will be lots of food, games, and fun!”

e Guerrilla Sections this weekend. Extra, optional sections to practice
HOF and Environment Diagrams this weekend. You'll be expected to
work in groups on questions that range from basic to midterm-level.
Details will be announced on Piazza.

Last modified: Thu Feb 20 20:10:46 2014 CS61A: Lecture #7 1

Data Structures

e To date, we've dealt with numbers and functions for the most part.

e Although one can do just about anything with these, it's not exactly
convenient,

e Example: encode a pair of integers as a single integer:
(z,y) & 273
e Every (z,y) pair can be encoded, but extracting x and y is a chore.

e So Python (like most languages) provides a set of additional data
structures for representing collections of values.

Last modified: Thu Feb 20 20:10:46 2014 CS61A: Lecture #7 2

Creating Tuples

e To create (construct) a tuple, use a sequence of expressions in
parentheses:

@) # The tuple with no values
(1, 2) # A pair: tuple with two items
(1,) # A singleton tuple: use comma to distinguish from (1)

(1, "Hello", (3, 4)) # Any mix of values possible.

e When unambiguous, the parentheses are unnecessary:

x=1, 2, 3 # Same as x = (1,2,3)
return True, 5 # Same as return (True, 5)
for i in 1, 2, 3: # Same as for i in (1,2,3):

Last modified: Thu Feb 20 20:10:46 2014 CS61A: Lecture #7 3

Selecting from Tuples

e Can compare, print, or select values from a tuple; little else.
e Selection is by explicit item number or “"unpacking”:

>>>x = (1, 7, 5)

>>> print(x[1], x[2])

75

>>> from operator import getitem
>>> print(getitem(x, 1), getitem(x, 2))
75

>>> x = (1, (2, 3), 5)

>>> print(len(x))

3

>>> a, b, ¢c = x

>>> print (b, c)

(2, 3) 5

>>> d, (e, £), g =x

>>> print(e, g)

2, 5

>>> X, §y =Y, X

777
Last modified: Thu Feb 20 20:10:46 2014 CS61A: Lecture #7 4

More Selection

Selecting subtuples (slices) is also possible:

>>x = (1, 7, 5, 6)

>>> print(x[1:3], x[0:2], x[:2], x[1:4], x[1:], x[1:2])
(r, 5) (1, 7) (1, 7) (r, 5, 6) (7, 5, 6) (7,)

>>> from operator import getitem

>>> print(getitem(x, slice(1,3)), getitem(x, slice(0,2))
(7, 5 (1, 7)

>>> a, *b, ¢ = X

>>> print(a, b, c)

1 (7, 5) 6

>>> a, *b = x

>>> print(a, b)

1 (7, 5, 6)

Last modified: Thu Feb 20 20:10:46 2014 CS61A: Lecture #7 5

Multiple Returns

Tuples provide a useful way to return multiple things from a function:

>>> divmod (38, 5) # Returns (38//5, 38%5)
(7, 3)

>>> def sumprod(x, y):
return x+y, X*y

>>> sumprod(3, 5)

(8, 15)

Last modified: Thu Feb 20 20:10:46 2014 CS61A: Lecture #7 6

Tuple is a Recursive Type

e Tuple is one type of value.

e Values thus include integers, booleans, strings, and tuples (among
others).

e Tuples are sequences of O or more values.

e Therefore, the definitions of "value" and "tuple” are is recursive:
they refer to themselves.

e In this case, we'd say that their definitions are mutually recursive,
since they each refers to the other.

e Recursive data types and recursive algorithms go together.

Last modified: Thu Feb 20 20:10:46 2014 CS61A: Lecture #7 7

Example: How Many Numbers?

e Let's consider a restricted tuple (call it a "numeric pair") consisting
of:
- The empty tuple: (),
- Or a tuple containing two values, each of which is an integer or a
numeric pair (still more recursion!)

e Given such a numeric pair, how many numbers are in it?

Last modified: Thu Feb 20 20:10:46 2014 CS61A: Lecture #7 8

Example: Code

def count_vals(pair):
"""Assuming PAIR i1s a numeric pair, the total number of integers
contained in the pair.
>>> count_vals(())

o)
>>> count_vals((1,))
1
>>> count_vals((1, 2))
2
>>> count_vals(((1, 2), (@3, 4), O)))
4
1f
return O
elif type(pair) is int:
return _

else return

Last modified: Thu Feb 20 20:10:46 2014 CS61A: Lecture #7 9

Example: Code

def count_vals(pair):
"""Assuming PAIR i1s a numeric pair, the total number of integers
contained in the pair.
>>> count_vals(())
0
>>> count_vals((1, ())
1
>>> count_vals((1, 2))
2
>>> count_vals(((1, 2), ((3, 4), O)))
4
if pair == ():
return O
elif type(pair) is int:
return _
else return

Last modified: Thu Feb 20 20:10:46 2014 CS61A: Lecture #7 9

Example: Code

def count_vals(pair):
"""Assuming PAIR i1s a numeric pair, the total number of integers
contained in the pair.
>>> count_vals(())
0
>>> count_vals((1, ())
1
>>> count_vals((1, 2))
2
>>> count_vals(((1, 2), ((3, 4), O)))
4
if pair == (O:
return O
elif type(pair) is int:
return 1
else return

Last modified: Thu Feb 20 20:10:46 2014 CS61A: Lecture #7 9

Example: Code

def count_vals(pair):
"""Assuming PAIR i1s a numeric pair, the total number of integers
contained in the pair.
>>> count_vals(())
0
>>> count_vals((1, ())
1
>>> count_vals((1, 2))
2
>>> count_vals(((1, 2), ((3, 4), O)))
4
if pair == (O:
return O
elif type(pair) is int:
return 1
else return #ints in pair[0] + #ints in pair[1]

Last modified: Thu Feb 20 20:10:46 2014 CS61A: Lecture #7 9

Example: Code

def count_vals(pair):
"""Assuming PAIR i1s a numeric pair, the total number of integers
contained in the pair.
>>> count_vals(())
0
>>> count_vals((1,))
1
>>> count_vals((1, 2))
2
>>> count_vals(((1, 2), ((3, 4), O)))
4
if pair == (O:
return O
elif type(pair) is int:
return 1
else return count_vals(pair[0]) + count_vals(pair[1])

Last modified: Thu Feb 20 20:10:46 2014 CS61A: Lecture #7 9

The Recursive Leap of Faith

e To implement count vals, we trusted its comment to be correct, even
as we implemented it.

e This is the essence of recursive thinking.
e If we can show that

- Our implementation is correct given that the comment is correct,
- And if we can show that the process must terminate,

then the comment (the specification of the function) is correct.

e For recursive data structures, showing termination involves using a
form of Noetherian induction.

Last modified: Thu Feb 20 20:10:46 2014 CS61A: Lecture #7 10

Noetherian Induction

(Source: http://en.wikipedia.org/wiki/Emmy_Noether)

Last modified: Thu Feb 20 20:10:46 2014

e A relation on values is well-founded if
there are no infinite descending chains:

e That is, if you start at some value and keep
stepping to smaller values (according to the
relation), then you must always get to a
minimal value after finite steps.

e E.g., natural or positive numbers under <.
e Or numeric pairs under "is an element of."

e Principle of Noetherian induction (named
after Emmy Noether):

-If P(z) is statement about values =x
from a well-founded set, and

- If P(x) is true whenever P(y) is true for
all y < =,

- Then P(x) is true for all z.

CS61A: Lecture #7 11

Induction and Recursion

e Recursive programs are justified (and constructed) by inductive rea-
soning.
e Basic structure:
def f(x):
if There are no valid values < x:
The ¢ ‘base case’’
return A value that's correct when x is minimal
else:

Use ‘‘The inductive hypothesis’’
return A solution constructed using f(y) where y < x

e The meaning of < depends on the application.

e In place of "refturn” might also use side-effect-producing code.

Last modified: Thu Feb 20 20:10:46 2014 CS61A: Lecture #7 12

	Lecture #7: Recursion (and a data structure)
	Data Structures
	Creating Tuples
	Selecting from Tuples
	More Selection
	Multiple Returns
	Tuple is a Recursive Type
	Example: How Many Numbers?
	Example: Code
	The Recursive Leap of Faith
	Noetherian Induction
	Induction and Recursion

