Lecture \#7: Recursion (and a data structure)

Announcements:

- A message from the AWE:

The Association of Women in EECS is hosting a 61A party this Sunday (2/9) from 1-3PM in the Woz! Come hang out, befriend other girls in 61A and meet AWE members who have taken it before! There will be lots of food, games, and fun!"

- Guerrilla Sections this weekend. Extra, optional sections to practice HOF and Environment Diagrams this weekend. You'll be expected to work in groups on questions that range from basic to midterm-level. Details will be announced on Piazza.

Data Structures

- To date, we've dealt with numbers and functions for the most part.
- Although one can do just about anything with these, it's not exactly convenient
- Example: encode a pair of integers as a single integer:

$$
(x, y) \Leftrightarrow 2^{x} \cdot 3^{y}
$$

- Every (x, y) pair can be encoded, but extracting x and y is a chore.
- So Python (like most languages) provides a set of additional data structures for representing collections of values.

Creating Tuples

- To create (construct) a tuple, use a sequence of expressions in parentheses:
() \# The tuple with no values
$(1,2) \quad$ \# A pair: tuple with two items
$(1$,$) \quad \# A singleton tuple: use comma to distinguish from (1)$
$(1$, "Hello", $(3,4))$ \# Any mix of values possible.
- When unambiguous, the parentheses are unnecessary:

$\mathrm{x}=1,2,3$	\# Same as $\mathrm{x}=(1,2,3)$
return True, 5	\# Same as return (True, 5)
for i in 1, 2, 3:	\# Same as for i in (1,2,3):

Selecting from Tuples

- Can compare, print, or select values from a tuple; little else.
- Selection is by explicit item number or "unpacking":

```
>>> \(\mathrm{x}=(1,7,5)\)
>>> print(x[1], x[2])
75
>>> from operator import getitem
>>> print(getitem(x, 1), getitem(x, 2))
75
>>> \(\mathrm{x}=(1,(2,3), 5)\)
>>> print(len(x))
3
>>> \(\mathrm{a}, \mathrm{b}, \mathrm{c}=\mathrm{x}\)
>>> print \((b, c)\)
\((2,3) 5\)
>>> d, (e, f), g = x
>>> print (e, g)
2, 5
>>> \(x, y=y, x\)
???
```

Last modified: Thu Feb 20 20:10:46 2014

More Selection

```
Selecting subtuples (slices) is also possible:
>>> x = (1, 7, 5, 6)
>>> print(x[1:3], x[0:2], x[:2], x[1:4], x[1:], x[1:2])
(7, 5) (1, 7) (1, 7) (7, 5, 6) (7, 5, 6) (7,)
>>> from operator import getitem
>>> print(getitem(x, slice(1,3)), getitem(x, slice(0,2))
(7, 5) (1, 7)
>>> a, *b, c = x
>>> print(a, b, c)
1 (7, 5) 6
>>> a, *b = x
>>> print(a, b)
1 (7, 5, 6)
```


Multiple Returns

Tuples provide a useful way to return multiple things from a function:
>>> divmod $(38,5) \quad \#$ Returns $(38 / / 5,38 \% 5)$
(7, 3)

```
>>> def sumprod(x, y):
```

... return $x+y, x * y$
>>> sumprod $(3,5)$
(8,15)

Tuple is a Recursive Type

- Tuple is one type of value.
- Values thus include integers, booleans, strings, and tuples (among others).
- Tuples are sequences of 0 or more values.
- Therefore, the definitions of "value" and "tuple" are is recursive: they refer to themselves.
- In this case, we'd say that their definitions are mutually recursive, since they each refers to the other.
- Recursive data types and recursive algorithms go together.

Example: How Many Numbers?

- Let's consider a restricted tuple (call it a "numeric pair") consisting of:
- The empty tuple: (),
- Or a tuple containing two values, each of which is an integer or a numeric pair (still more recursion!)
- Given such a numeric pair, how many numbers are in it?

Example: Code

```
def count_vals(pair):
    """Assuming PAIR is a numeric pair, the total number of integers
    contained in the pair.
    >>> count_vals(())
    0
    >>> count_vals( (1, ()) )
    1
    >>> count_vals( (1, 2) )
    2
    >>> count_vals( ((1, 2), ((3,4), ())) )
    4
    """
    if }\frac{\mathrm{ pair == ()}}{\mathrm{ return 0}
    elif type(pair) is int:
        return 1
    else return count_vals(pair[0]) + count_vals(pair[1])
```


The Recursive Leap of Faith

- To implement count_vals, we trusted its comment to be correct, even as we implemented it.
- This is the essence of recursive thinking.
- If we can show that
- Our implementation is correct given that the comment is correct,
- And if we can show that the process must terminate,
then the comment (the specification of the function) is correct.
- For recursive data structures, showing termination involves using a form of Noetherian induction.

- A relation on values is well-founded if there are no infinite descending chains:
- That is, if you start at some value and keep stepping to smaller values (according to the relation), then you must always get to a minimal value after finite steps.
- E.g., natural or positive numbers under $<$.
- Or numeric pairs under "is an element of."
- Principle of Noetherian induction (named after Emmy Noether):
- If $P(x)$ is statement about values x from a well-founded set, and
- If $P(x)$ is true whenever $P(y)$ is true for all $y<x$,
- Then $P(x)$ is true for all x.

Last modified: Thu Feb 20 20:10:46 2014

Induction and Recursion

- Recursive programs are justified (and constructed) by inductive reasoning.
- Basic structure:
def $f(x)$:
if There are no valid values $\prec x$:
\# The ' base case'"
return A value that's correct when x is minimal else:
\# Use '"The inductive hypothesis',
return A solution constructed using $f(y)$ where $y \prec x$
- The meaning of \prec depends on the application.
- In place of "return" might also use side-effect-producing code.

