
Lecture #8: More Recursion

Announcements:

• Project #1 due next Thursday (13 Feb).

• Test #1 Tuesday, 18 Feb at 8PM.

• AWE 61A Party this Sunday (9 Feb) in the Woz, 1–3PM.

• Guerilla Sections this weekend (see Piazza).

• Self-assessment quiz will be released tonight, due Monday. Watch
the website and Piazza.

Last modified: Fri Feb 7 15:28:24 2014 CS61A: Lecture #8 1

A Simple Recursion

2EMHFWV

IXQF�FDVFDGH�Q�

3URJUDP�RXWSXW�

���
��
�
��

)UDPHV

*OREDO�IUDPH

FDVFDGH �

FDVFDGH

Q ���

FDVFDGH

Q ��

5HWXUQ
YDOXH

1RQH

FDVFDGH

Q �

5HWXUQ
YDOXH

1RQH

� GHI�FDVFDGH�Q��

� ����LI�Q������

� ��������SULQW�Q�

� ����HOVH�

� ��������SULQW�Q�

� ��������FDVFDGH�Q�����

� ��������SULQW�Q�

� ��������

� FDVFDGH�����

• Each frame connects
to the global frame.

• Frames without “Re-
turn value” are still
active

• Each recursive call
has its own n value.

• That’s how it works,
but try not to think
of it this way!

• Think recursively in-
stead.

Last modified: Fri Feb 7 15:28:24 2014 CS61A: Lecture #8 2

Classifying Recursions: Linear Recursions

cascade(123)

print(123) cascade(12) print(123)

•

•

cascade(12)

print(12) cascade(1) print(12)

•

•

cascade(1)

print(1)

•

• Here, each call of cascade con-
tains one recursive call.

• When that call completes, still a
print to go.

• So calls must remain pending.

• A linear recursive process: total
work and space proportional to
depth of calls.

Last modified: Fri Feb 7 15:28:24 2014 CS61A: Lecture #8 3

Classifying Recursions: Iterative Processes

triang(123)

print(123) triang(12)

•

•

triang(12)

print(12) triang(1)

•

•

triang(1)

print(1)

•

def triang(n):

print(n)

if n < 10: triang(n-1)

• Again, each call of triang con-
tains one recursive call.

• So this is a type of linear recur-
sive process.

• But there’s no more to do when
that call completes (tail recur-
sive)

• So in principle, calls need not re-
main pending.

• An iterative process: total work
still proportional to depth of
calls, but total space need not
be.

• This kind is suitable for a loop.

Last modified: Fri Feb 7 15:28:24 2014 CS61A: Lecture #8 4

Classifying Recursion: Tree Recursions

• Previously, we looked at a program for computing values in the Fi-
bonacci sequence:

def fib(n):

"""The Nth Fibonacci number, N>=0."""

assert n >= 0

if n <= 1:

return n

else:

return fib(n-2) + fib(n-1)

Here, each invocation of fib makes two calls: work is exponential
in depth of calls: A tree-recursive process.

fib(6)

fib(4) fib(5)

fib(2) fib(3)

fib(0) fib(1) fib(1) fib(2)

fib(0) fib(1)

fib(3) fib(4)

Last modified: Fri Feb 7 15:28:24 2014 CS61A: Lecture #8 5

A Tree Recursion: Partitions

• partitions(n, k): The number of non-decreasing sequences of two or
more positive integers between 1 and k that add up to n.

• For example, partitions(6, 4) is 9:

2 + 4 = 6

1 + 1 + 4 = 6

3 + 3 = 6

1 + 2 + 3 = 6

1 + 1 + 1 + 3 = 6

2 + 2 + 2 = 6

1 + 1 + 2 + 2 = 6

1 + 1 + 1 + 1 + 2 = 6

1 + 1 + 1 + 1 + 1 + 1 = 6

Last modified: Fri Feb 7 15:28:24 2014 CS61A: Lecture #8 6

Computing Partitions

• Observation: can choose sizes 1–k for the last partition.

• If we choose size k for the last partition, then how many ways are
there to partition the rest?

.

• Suppose we choose not to use size k for the last partition, then how
many choices are there?

.

• Finally, there is only one way to partition 0 items or to partition a
negative number of items or a positive number of items with maxi-
mum partition size of 0.

Last modified: Fri Feb 7 15:28:24 2014 CS61A: Lecture #8 7

Computing Partitions

• Observation: can choose sizes 1–k for the last partition.

• If we choose size k for the last partition, then how many ways are
there to partition the rest?

• The number of ways of partitioning n − k items of maximum size k.

• Suppose we choose not to use size k for the last partition, then how
many choices are there?

.

• Finally, there is only one way to partition 0 items or to partition a
negative number of items or a positive number of items with maxi-
mum partition size of 0.

Last modified: Fri Feb 7 15:28:24 2014 CS61A: Lecture #8 7

Computing Partitions

• Observation: can choose sizes 1–k for the last partition.

• If we choose size k for the last partition, then how many ways are
there to partition the rest?

• The number of ways of partitioning n − k items of maximum size k.

• Suppose we choose not to use size k for the last partition, then how
many choices are there?

• The number of ways of partitioning n items of maximum size k − 1.

• Finally, there is only one way to partition 0 items or to partition a
negative number of items or a positive number of items with maxi-
mum partition size of 0.

Last modified: Fri Feb 7 15:28:24 2014 CS61A: Lecture #8 7

Partitions, concluded

This leads to the following program:

def partitions(n, k):

"""The number of ways of partitioning N items into partitions of size

<=K."""

if n == 0:

return 1

elif n < 0 or k <= 0:

return 0

else:

with_k =

without_k =

return with_k + without_k

Last modified: Fri Feb 7 15:28:24 2014 CS61A: Lecture #8 8

Partitions, concluded

This leads to the following program:

def partitions(n, k):

"""The number of ways of partitioning N items into partitions of size

<=K."""

if n == 0:

return 1

elif n < 0 or k <= 0:

return 0

else:

with_k = partitions(n-k, k)

without_k = partitions(n, k-1)

return with_k + without_k

Last modified: Fri Feb 7 15:28:24 2014 CS61A: Lecture #8 8

	Lecture #8: More Recursion
	A Simple Recursion
	Classifying Recursions: Linear Recursions
	Classifying Recursions: Iterative Processes
	Classifying Recursion: Tree Recursions
	A Tree Recursion: Partitions
	Computing Partitions
	Partitions, concluded

