Lecture \#8: More Recursion

Announcements:

- Project \#1 due next Thursday (13 Feb).
- Test \#1 Tuesday, 18 Feb at 8PM.
- AWE 61A Party this Sunday (9 Feb) in the Woz, 1-3PM.
- Guerilla Sections this weekend (see Piazza)
- Self-assessment quiz will be released tonight, due Monday. Watch the website and Piazza.
 stead.

Classifying Recursion: Tree Recursions

- Previously, we looked at a program for computing values in the Fibonacci sequence:

```
def fib(n):
            """The Nth Fibonacci number, N>=0."""
            assert n >= 0
            if n <= 1:
            return n
            else:
                return fib(n-2) + fib(n-1)
```

Here, each invocation of fib makes two calls: work is exponential in depth of calls: A tree-recursive process.

A Tree Recursion: Partitions

- partitions (n, k) : The number of non-decreasing sequences of two or more positive integers between 1 and k that add up to n.
- For example, partitions $(6,4)$ is 9:

$$
\begin{aligned}
& 2+4=6 \\
& 1+1+4=6 \\
& 3+3=6 \\
& 1+2+3=6 \\
& 1+1+1+3=6 \\
& 2+2+2=6 \\
& 1+1+2+2=6 \\
& 1+1+1+1+2=6 \\
& 1+1+1+1+1+1=6
\end{aligned}
$$

def triang(n): print(n) if n < 10: triang $(\mathrm{n}-1)$

- Again, each call of triang contains one recursive call.
- So this is a type of linear recursive process.
- But there's no more to do when that call completes (tail recursive)
- So in principle, calls need not remain pending.
- An iterative process: total work still proportional to depth of calls, but total space need not be.
- This kind is suitable for a loop.

Partitions, concluded

This leads to the following program:
def partitions(n, k):
"""The number of ways of partitioning N items into partitions of si <=K."""
if $\mathrm{n}==0$:
return 1
elif $\mathrm{n}<0$ or $\mathrm{k}<=0$:
return 0
else
with_k = partitions(n-k, k)
without_k = partitions(n, k-1)
return with_k + without_k

