
Lecture #9: More Functions

Last modified: Thu Feb 20 20:10:45 2014 CS61A: Lecture #9 1

Another Tree Recursion: Hog Dice

• What are the odds of rolling at least k in hog with n s-sided dice?
(n > 0 and for us, s > 0 is 4 or 6)

rolls of n s-sided dice totaling ≥ k

sn

• If k ≤ 1, then clearly the numerator is just sn.

• For k > 1, we consider only rolls that include dice values 2–s, since
any 1-die “pigs out.” Let’s call this quantity rolls2(k, n, s).

• The number of ways to score ≥ k is 0 if . This is a base case.

• If n > 0 then the number of ways to score at least k ≤ 1 with n dice
none of which is 1 is . This is also a base case.

• If the first die comes up d (2 ≤ d ≤ s), then there are
ways to throw the remaining n − 1 dice to get a total of at least k
with all n dice.

• This gives us a tree recursion. How would you modify it for the
“swine swap” rule?

Last modified: Thu Feb 20 20:10:45 2014 CS61A: Lecture #9 2

Another Tree Recursion: Hog Dice

• What are the odds of rolling at least k in hog with n s-sided dice?
(n > 0 and for us, s > 0 is 4 or 6)

rolls of n s-sided dice totaling ≥ k

sn

• If k ≤ 1, then clearly the numerator is just sn.

• For k > 1, we consider only rolls that include dice values 2–s, since
any 1-die “pigs out.” Let’s call this quantity rolls2(k, n, s).

• The number of ways to score ≥ k is 0 if ns < k. This is a base case.

• If n > 0 then the number of ways to score at least k ≤ 1 with n dice
none of which is 1 is . This is also a base case.

• If the first die comes up d (2 ≤ d ≤ s), then there are
ways to throw the remaining n − 1 dice to get a total of at least k
with all n dice.

• This gives us a tree recursion. How would you modify it for the
“swine swap” rule?

Last modified: Thu Feb 20 20:10:45 2014 CS61A: Lecture #9 2

Another Tree Recursion: Hog Dice

• What are the odds of rolling at least k in hog with n s-sided dice?
(n > 0 and for us, s > 0 is 4 or 6)

rolls of n s-sided dice totaling ≥ k

sn

• If k ≤ 1, then clearly the numerator is just sn.

• For k > 1, we consider only rolls that include dice values 2–s, since
any 1-die “pigs out.” Let’s call this quantity rolls2(k, n, s).

• The number of ways to score ≥ k is 0 if ns < k. This is a base case.

• If n > 0 then the number of ways to score at least k ≤ 1 with n dice
none of which is 1 is (s − 1)n. This is also a base case.

• If the first die comes up d (2 ≤ d ≤ s), then there are
ways to throw the remaining n − 1 dice to get a total of at least k
with all n dice.

• This gives us a tree recursion. How would you modify it for the
“swine swap” rule?

Last modified: Thu Feb 20 20:10:45 2014 CS61A: Lecture #9 2

Another Tree Recursion: Hog Dice

• What are the odds of rolling at least k in hog with n s-sided dice?
(n > 0 and for us, s > 0 is 4 or 6)

rolls of n s-sided dice totaling ≥ k

sn

• If k ≤ 1, then clearly the numerator is just sn.

• For k > 1, we consider only rolls that include dice values 2–s, since
any 1-die “pigs out.” Let’s call this quantity rolls2(k, n, s).

• The number of ways to score ≥ k is 0 if ns < k. This is a base case.

• If n > 0 then the number of ways to score at least k ≤ 1 with n dice
none of which is 1 is (s − 1)n. This is also a base case.

• If the first die comes up d (2 ≤ d ≤ s), then there are rolls2(k - d, n - 1, s)
ways to throw the remaining n − 1 dice to get a total of at least k
with all n dice.

• This gives us a tree recursion. How would you modify it for the
“swine swap” rule?

Last modified: Thu Feb 20 20:10:45 2014 CS61A: Lecture #9 2

Back to Numeric Pairs: Find the Number

• A numeric pair is either an empty tuple, an integer, or a tuple con-
sisting of two numeric pairs (slight revision from last time).

• Problem: does the number x occur in a given numeric pair?

def occurs(x, pair):

"""X occurs at least once in numeric pair PAIR.

>>> occurs(3, ((2, 1), ((), (3, ()))))

True

>>> occurs(5, ((2, 1), ((), (3, ()))))

False

"""

if :

return True

elif :

return False

else:

return

• What is the time required by this function proportional to? A:

Last modified: Thu Feb 20 20:10:45 2014 CS61A: Lecture #9 3

Back to Numeric Pairs: Find the Number

• A numeric pair is either an empty tuple, an integer, or a tuple con-
sisting of two numeric pairs (slight revision from last time).

• Problem: does the number x occur in a given numeric pair?

def occurs(x, pair):

"""X occurs at least once in numeric pair PAIR.

>>> occurs(3, ((2, 1), ((), (3, ()))))

True

>>> occurs(5, ((2, 1), ((), (3, ()))))

False

"""

if x == pair:

return True

elif :

return False

else:

return

• What is the time required by this function proportional to? A:

Last modified: Thu Feb 20 20:10:45 2014 CS61A: Lecture #9 3

Back to Numeric Pairs: Find the Number

• A numeric pair is either an empty tuple, an integer, or a tuple con-
sisting of two numeric pairs (slight revision from last time).

• Problem: does the number x occur in a given numeric pair?

def occurs(x, pair):

"""X occurs at least once in numeric pair PAIR.

>>> occurs(3, ((2, 1), ((), (3, ()))))

True

>>> occurs(5, ((2, 1), ((), (3, ()))))

False

"""

if x == pair:

return True

elif pair == () or type(pair) is int:

return False

else:

return

• What is the time required by this function proportional to? A:

Last modified: Thu Feb 20 20:10:45 2014 CS61A: Lecture #9 3

Back to Numeric Pairs: Find the Number

• A numeric pair is either an empty tuple, an integer, or a tuple con-
sisting of two numeric pairs (slight revision from last time).

• Problem: does the number x occur in a given numeric pair?

def occurs(x, pair):

"""X occurs at least once in numeric pair PAIR.

>>> occurs(3, ((2, 1), ((), (3, ()))))

True

>>> occurs(5, ((2, 1), ((), (3, ()))))

False

"""

if x == pair:

return True

elif pair == () or type(pair) is int:

return False

else:

return occurs(x, pair[0]) or occurs(x, pair[1])

• What is the time required by this function proportional to? A:

Last modified: Thu Feb 20 20:10:45 2014 CS61A: Lecture #9 3

Back to Numeric Pairs: Find the Number

• A numeric pair is either an empty tuple, an integer, or a tuple con-
sisting of two numeric pairs (slight revision from last time).

• Problem: does the number x occur in a given numeric pair?

def occurs(x, pair):

"""X occurs at least once in numeric pair PAIR.

>>> occurs(3, ((2, 1), ((), (3, ()))))

True

>>> occurs(5, ((2, 1), ((), (3, ()))))

False

"""

if x == pair:

return True

elif pair == () or type(pair) is int:

return False

else:

return occurs(x, pair[0]) or occurs(x, pair[1])

• What is the time required by this function proportional to? A:
The total number of tuples and integers in pair.

Last modified: Thu Feb 20 20:10:45 2014 CS61A: Lecture #9 3

Numeric Pairs: First Leaf

• A leaf in a numeric pair is the empty tuple or an integer.

• Define the first leaf as the leftmost leaf in the Python expression
that denotes a tree.

• Example: the first leaf of ((((1, 3), 7), ()), (2, 5)) is 1:

(•, •)

(•, •)

(•, •)

(•, •)

1 3

7

()

(•, •)

2 5

Last modified: Thu Feb 20 20:10:45 2014 CS61A: Lecture #9 4

First Leaf Code

def first_leaf(pair):

"""The first leaf in PAIR, reading left to right.

>>> first_leaf(())

()

>>> first_leaf(5)

5

>>> first_leaf((((3, ()), (2, 1)), ()))

3

>>> first_leaf(((((), 3), (2, 1)), ()))

()

"""

if :

return pair

else:

return

What kind of a recursive process is this? A:

Last modified: Thu Feb 20 20:10:45 2014 CS61A: Lecture #9 5

First Leaf Code

def first_leaf(pair):

"""The first leaf in PAIR, reading left to right.

>>> first_leaf(())

()

>>> first_leaf(5)

5

>>> first_leaf((((3, ()), (2, 1)), ()))

3

>>> first_leaf(((((), 3), (2, 1)), ()))

()

"""

if type(pair) is int or pair == ():

return pair

else:

return

What kind of a recursive process is this? A:

Last modified: Thu Feb 20 20:10:45 2014 CS61A: Lecture #9 5

First Leaf Code

def first_leaf(pair):

"""The first leaf in PAIR, reading left to right.

>>> first_leaf(())

()

>>> first_leaf(5)

5

>>> first_leaf((((3, ()), (2, 1)), ()))

3

>>> first_leaf(((((), 3), (2, 1)), ()))

()

"""

if type(pair) is int or pair == ():

return pair

else:

return first_leaf(pair[0])

What kind of a recursive process is this? A:

Last modified: Thu Feb 20 20:10:45 2014 CS61A: Lecture #9 5

First Leaf Code

def first_leaf(pair):

"""The first leaf in PAIR, reading left to right.

>>> first_leaf(())

()

>>> first_leaf(5)

5

>>> first_leaf((((3, ()), (2, 1)), ()))

3

>>> first_leaf(((((), 3), (2, 1)), ()))

()

"""

if type(pair) is int or pair == ():

return pair

else:

return first_leaf(pair[0])

What kind of a recursive process is this? A: Iterative process (tail recursion)

Last modified: Thu Feb 20 20:10:45 2014 CS61A: Lecture #9 5

Sierpinski Triangle

• No discussion of recursion is complete without a mention of fractal
patterns, which exhibit self-similarity when scaled.

• We’ll define a “Sierpinski Triangle of depth k and side s” to be

– A filled equilateral triangle with sides of length s, if k = 0, else

– Three Sierpinski Triangles of depth k − 1 and side s/2 arranged
in the three corners of an equilateral triangle with side s.

• Here are triangles of degree 4 and 8:

Last modified: Thu Feb 20 20:10:45 2014 CS61A: Lecture #9 6

Drawing Sierpinski Triangles

• Assume the existence of the function triangle:

def triangle(x, y, side):

"""Draw a filled equilateral triangle with its lower-left corner

at (X, Y) and with given SIDE. The base is aligned with the x-axis."""

• We can now read off the definition of the triangle:

def sierpinski(x, y, side, depth):

"""Draw a Sierpinski triangle of given DEPTH with given SIDE and

lower-left corner at (X, Y)."""

if depth == 0:

else:

height = 0.25 * sqrt(3) * side

Last modified: Thu Feb 20 20:10:45 2014 CS61A: Lecture #9 7

Drawing Sierpinski Triangles

• Assume the existence of the function triangle:

def triangle(x, y, side):

"""Draw a filled equilateral triangle with its lower-left corner

at (X, Y) and with given SIDE. The base is aligned with the x-axis."""

• We can now read off the definition of the triangle:

def sierpinski(x, y, side, depth):

"""Draw a Sierpinski triangle of given DEPTH with given SIDE and

lower-left corner at (X, Y)."""

if depth == 0:

triangle(x, y, side)

else:

height = 0.25 * sqrt(3) * side

Last modified: Thu Feb 20 20:10:45 2014 CS61A: Lecture #9 7

Drawing Sierpinski Triangles

• Assume the existence of the function triangle:

def triangle(x, y, side):

"""Draw a filled equilateral triangle with its lower-left corner

at (X, Y) and with given SIDE. The base is aligned with the x-axis."""

• We can now read off the definition of the triangle:

def sierpinski(x, y, side, depth):

"""Draw a Sierpinski triangle of given DEPTH with given SIDE and

lower-left corner at (X, Y)."""

if depth == 0:

triangle(x, y, side)

else:

height = 0.25 * sqrt(3) * side

sierpinski(x, y, side/2, depth-1)

Last modified: Thu Feb 20 20:10:45 2014 CS61A: Lecture #9 7

Drawing Sierpinski Triangles

• Assume the existence of the function triangle:

def triangle(x, y, side):

"""Draw a filled equilateral triangle with its lower-left corner

at (X, Y) and with given SIDE. The base is aligned with the x-axis."""

• We can now read off the definition of the triangle:

def sierpinski(x, y, side, depth):

"""Draw a Sierpinski triangle of given DEPTH with given SIDE and

lower-left corner at (X, Y)."""

if depth == 0:

triangle(x, y, side)

else:

height = 0.25 * sqrt(3) * side

sierpinski(x, y, side/2, depth-1)

sierpinski(x + side/4, y + height, side/2, depth-1)

Last modified: Thu Feb 20 20:10:45 2014 CS61A: Lecture #9 7

Drawing Sierpinski Triangles

• Assume the existence of the function triangle:

def triangle(x, y, side):

"""Draw a filled equilateral triangle with its lower-left corner

at (X, Y) and with given SIDE. The base is aligned with the x-axis."""

• We can now read off the definition of the triangle:

def sierpinski(x, y, side, depth):

"""Draw a Sierpinski triangle of given DEPTH with given SIDE and

lower-left corner at (X, Y)."""

if depth == 0:

triangle(x, y, side)

else:

height = 0.25 * sqrt(3) * side

sierpinski(x, y, side/2, depth-1)

sierpinski(x + side/4, y + height, side/2, depth-1)

sierpinski(x + side/2, y, side/2, depth-1)

Last modified: Thu Feb 20 20:10:45 2014 CS61A: Lecture #9 7

	Lecture #9: More Functions
	Another Tree Recursion: Hog Dice
	Back to Numeric Pairs: Find the Number
	Numeric Pairs: First Leaf
	First Leaf Code
	Sierpinski Triangle
	Drawing Sierpinski Triangles

