Lecture \#9: More Functions

Another Tree Recursion: Hog Dice

- What are the odds of rolling at least k in hog with $n s$-sided dice? ($n>0$ and for us, $s>0$ is 4 or 6)

$$
\# \text { rolls of } n s \text {-sided dice totaling } \geq k
$$

s^{n}

- If $k \leq 1$, then clearly the numerator is just s^{n}.
- For $k>1$, we consider only rolls that include dice values $2-s$, since any 1-die "pigs out." Let's call this quantity rolls2(k, n, s).
- The number of ways to score $\geq k$ is 0 if \qquad . This is a base case.
- If $n>0$ then the number of ways to score at least $k \leq 1$ with n dice none of which is 1 is \qquad . This is also a base case.
- If the first die comes up $d(2 \leq d \leq s)$, then there are ways to throw the remaining $n-1$ dice to get a total of at least k with all n dice.
- This gives us a tree recursion. How would you modify it for the "swine swap" rule?

Another Tree Recursion: Hog Dice

- What are the odds of rolling at least k in hog with $n s$-sided dice? ($n>0$ and for us, $s>0$ is 4 or 6)

$$
\# \text { rolls of } n s \text {-sided dice totaling } \geq k
$$

s^{n}

- If $k \leq 1$, then clearly the numerator is just s^{n}.
- For $k>1$, we consider only rolls that include dice values $2-s$, since any 1-die "pigs out." Let's call this quantity rolls2(k, n, s).
- The number of ways to score $\geq k$ is 0 if $\underline{n s<k}$. This is a base case.
- If $n>0$ then the number of ways to score at least $k \leq 1$ with n dice none of which is 1 is \qquad . This is also a base case.
- If the first die comes up $d(2 \leq d \leq s)$, then there are ways to throw the remaining $n-1$ dice to get a total of at least k with all n dice.
- This gives us a tree recursion. How would you modify it for the "swine swap" rule?

Another Tree Recursion: Hog Dice

- What are the odds of rolling at least k in hog with $n s$-sided dice? ($n>0$ and for us, $s>0$ is 4 or 6)

$$
\# \text { rolls of } n s \text {-sided dice totaling } \geq k
$$

s^{n}

- If $k \leq 1$, then clearly the numerator is just s^{n}.
- For $k>1$, we consider only rolls that include dice values $2-s$, since any 1-die "pigs out." Let's call this quantity rolls2(k, n, s).
- The number of ways to score $\geq k$ is 0 if $\underline{n s<k}$. This is a base case.
- If $n>0$ then the number of ways to score at least $k \leq 1$ with n dice none of which is 1 is $(s-1)^{n}$. This is also a base case.
- If the first die comes up d ($2 \leq d \leq s$), then there are ways to throw the remaining $n-1$ dice to get a total of at least k with all n dice.
- This gives us a tree recursion. How would you modify it for the "swine swap" rule?

Another Tree Recursion: Hog Dice

- What are the odds of rolling at least k in hog with $n s$-sided dice? ($n>0$ and for us, $s>0$ is 4 or 6)

$$
\# \text { rolls of } n s \text {-sided dice totaling } \geq k
$$

s^{n}

- If $k \leq 1$, then clearly the numerator is just s^{n}.
- For $k>1$, we consider only rolls that include dice values $2-s$, since any 1-die "pigs out." Let's call this quantity rolls2(k, n, s).
- The number of ways to score $\geq k$ is 0 if $\underline{n s<k}$. This is a base case.
- If $n>0$ then the number of ways to score at least $k \leq 1$ with n dice none of which is 1 is $(s-1)^{n}$. This is also a base case.
- If the first die comes up $d(2 \leq d \leq s)$, then there are rolls2(k-d,n-1,s) ways to throw the remaining $n-1$ dice to get a total of at least k with all n dice.
- This gives us a tree recursion. How would you modify it for the "swine swap" rule?

Back to Numeric Pairs: Find the Number

- A numeric pair is either an empty tuple, an integer, or a tuple consisting of two numeric pairs (slight revision from last time).
- Problem: does the number x occur in a given numeric pair?

```
def occurs(x, pair):
    """X occurs at least once in numeric pair PAIR.
    >>> occurs(3, ((2, 1), ((), (3, ()))))
    True
    >>> occurs(5, ((2, 1), ((), (3, ()))))
    False
    | | |
    if
```

\qquad

``` :
            return True
    elif
```

\qquad

```
            return False
    else:
        return
```

- What is the time required by this function proportional to? A:

Back to Numeric Pairs: Find the Number

- A numeric pair is either an empty tuple, an integer, or a tuple consisting of two numeric pairs (slight revision from last time).
- Problem: does the number x occur in a given numeric pair?

```
def occurs(x, pair):
    """X occurs at least once in numeric pair PAIR.
    >>> occurs(3, ((2, 1), ((), (3, ()))))
    True
    >>> occurs(5,((2, 1), ((), (3, ()))))
    False
    """
    if x == pair:
    elif
```

\qquad

```
        return False
    else:
        return
```

- What is the time required by this function proportional to? A :

Back to Numeric Pairs: Find the Number

- A numeric pair is either an empty tuple, an integer, or a tuple consisting of two numeric pairs (slight revision from last time).
- Problem: does the number x occur in a given numeric pair?

```
def occurs(x, pair):
    """X occurs at least once in numeric pair PAIR.
    >>> occurs(3, ((2, 1), ((), (3, ()))))
    True
    >>> occurs(5,((2, 1), ((), (3, ()))))
    False
    """
    if x == pair:
        return True
    elif pair == () or type(pair) is int:
        return False
    else:
        return
```

- What is the time required by this function proportional to? A :

Back to Numeric Pairs: Find the Number

- A numeric pair is either an empty tuple, an integer, or a tuple consisting of two numeric pairs (slight revision from last time).
- Problem: does the number x occur in a given numeric pair?

```
def occurs(x, pair):
    """X occurs at least once in numeric pair PAIR.
    >>> occurs(3, ((2, 1), ((), (3, ()))))
    True
    >>> occurs(5,((2, 1), ((), (3, ()))))
    False
    """
    if x == pair:
        return True
    elif pair == () or type(pair) is int:
        return False
    else:
        return occurs(x, pair[0]) or occurs(x, pair[1])
```

- What is the time required by this function proportional to? A :

Back to Numeric Pairs: Find the Number

- A numeric pair is either an empty tuple, an integer, or a tuple consisting of two numeric pairs (slight revision from last time).
- Problem: does the number x occur in a given numeric pair?

```
def occurs(x, pair):
    """X occurs at least once in numeric pair PAIR.
    >>> occurs(3, ((2, 1), ((), (3, ()))))
    True
    >>> occurs(5, ((2, 1), ((), (3, ()))))
    False
    """
    if x == pair:
        return True
    elif pair == () or type(pair) is int:
        return False
    else:
        return occurs(x, pair[0]) or occurs(x, pair[1])
```

- What is the time required by this function proportional to? A : The total number of tuples and integers in pair.

Numeric Pairs: First Leaf

- A leaf in a numeric pair is the empty tuple or an integer.
- Define the first leaf as the leftmost leaf in the Python expression that denotes a tree.
- Example: the first leaf of $(((1,3), 7),()),(2,5))$ is 1 :

First Leaf Code

```
def first_leaf(pair):
    """The first leaf in PAIR, reading left to right.
    >>> first_leaf(())
    ()
    >>> first_leaf(5)
    5
>>> first_leaf((((3, ()), (2, 1)), ()))
3
>>> first_leaf(((((), 3), (2, 1)), ()))
()
| | |
    if
```

\qquad

``` :
else:
        return
```

\qquad

What kind of a recursive process is this? A :

First Leaf Code

```
def first_leaf(pair):
    """The first leaf in PAIR, reading left to right.
    >>> first_leaf(())
    ()
    >>> first_leaf(5)
    5
    >>> first_leaf((((3, ()), (2, 1)), ()))
3
>>> first_leaf(((((), 3), (2, 1)), ()))
()
" " "
if type(pair) is int or pair == ():
else:
        return
```

What kind of a recursive process is this? A :

First Leaf Code

```
def first_leaf(pair):
    """The first leaf in PAIR, reading left to right.
    >>> first_leaf(())
    ()
    >>> first_leaf(5)
    5
    >>> first_leaf((((3, ()), (2, 1)), ()))
3
>>> first_leaf(((((), 3), (2, 1)), ()))
()
| | |
if type(pair) is int or pair == ():
        return pair
    else:
        return first_leaf(pair[0])
```

What kind of a recursive process is this? A:

First Leaf Code

```
def first_leaf(pair):
    """The first leaf in PAIR, reading left to right.
    >>> first_leaf(())
    ()
    >>> first_leaf(5)
    5
    >>> first_leaf((((3, ()), (2, 1)), ()))
3
>>> first_leaf(((((), 3), (2, 1)), ()))
()
| | |
if type(pair) is int or pair == ():
        return pair
    else:
        return first_leaf(pair[0])
```

 What kind of a recursive process is this? A: Iterative process (tail recursion)

Sierpinski Triangle

- No discussion of recursion is complete without a mention of fractal patterns, which exhibit self-similarity when scaled.
- We'll define a "Sierpinski Triangle of depth k and side s " to be
- A filled equilateral triangle with sides of length s, if $k=0$, else
- Three Sierpinski Triangles of depth $k-1$ and side $s / 2$ arranged in the three corners of an equilateral triangle with side s.
- Here are triangles of degree 4 and 8:

CS61A: Lecture \#9 6

Drawing Sierpinski Triangles

- Assume the existence of the function triangle:

```
def triangle(x, y, side):
    """Draw a filled equilateral triangle with its lower-left corner
    at (X, Y) and with given SIDE. The base is aligned with the x-axis."""
```

- We can now read off the definition of the triangle:

```
def sierpinski(x, y, side, depth):
    """Draw a Sierpinski triangle of given DEPTH with given SIDE and
    lower-left corner at (X, Y)."""
    if depth == 0:
    else:
    height = 0.25* sqrt(3) * side
```

\qquad
\qquad
\qquad

Drawing Sierpinski Triangles

- Assume the existence of the function triangle:

```
def triangle(x, y, side):
    """Draw a filled equilateral triangle with its lower-left corner
    at (X, Y) and with given SIDE. The base is aligned with the x-axis."""
```

- We can now read off the definition of the triangle:

```
def sierpinski(x, y, side, depth):
    """Draw a Sierpinski triangle of given DEPTH with given SIDE and
    lower-left corner at (X, Y)."""
    if depth == 0:
    triangle(x, y, side)
    else:
        height = 0.25* sqrt(3) * side
```

\qquad
\qquad
\qquad

Drawing Sierpinski Triangles

- Assume the existence of the function triangle:

```
def triangle(x, y, side):
    """Draw a filled equilateral triangle with its lower-left corner
    at (X, Y) and with given SIDE. The base is aligned with the x-axis."""
```

- We can now read off the definition of the triangle:

```
def sierpinski(x, y, side, depth):
    """Draw a Sierpinski triangle of given DEPTH with given SIDE and
    lower-left corner at (X, Y)."""
    if depth == 0:
    triangle(x, y, side)
    else:
        height = 0.25* sqrt(3) * side
        sierpinski(x, y, side/2, depth-1)
```

\qquad
\qquad

Drawing Sierpinski Triangles

- Assume the existence of the function triangle:

```
def triangle(x, y, side):
    """Draw a filled equilateral triangle with its lower-left corner
    at (X, Y) and with given SIDE. The base is aligned with the x-axis."""
```

- We can now read off the definition of the triangle:

```
def sierpinski(x, y, side, depth):
    """Draw a Sierpinski triangle of given DEPTH with given SIDE and
    lower-left corner at (X, Y)."""
    if depth == 0:
    triangle(x, y, side)
    else:
        height = 0.25 * sqrt(3) * side
        sierpinski(x, y, side/2, depth-1)
        sierpinski(x + side/4, y + height, side/2, depth-1)
```


Drawing Sierpinski Triangles

- Assume the existence of the function triangle:

```
def triangle(x, y, side):
    """Draw a filled equilateral triangle with its lower-left corner
    at (X, Y) and with given SIDE. The base is aligned with the x-axis."""
```

- We can now read off the definition of the triangle:

```
def sierpinski(x, y, side, depth):
    """Draw a Sierpinski triangle of given DEPTH with given SIDE and
    lower-left corner at (X, Y)."""
    if depth == 0:
    triangle(x, y, side)
    else:
        height =0.25 * sqrt(3) * side
        sierpinski(x, y, side/2, depth-1)
        sierpinski(x + side/4, y + height, side/2, depth-1)
        sierpinski(x + side/2, y, side/2, depth-1)
```

