
Lecture #10: Abstractions: From Function to Data

Announcements:

• Watch Piazza, home page for news concerning review on Monday.

• If you haven’t responded to the Welcome Survey in HW#1, please
do so. We’re about 200 responses shy.

• Quiz results. Out of 3 questions: 18% got 3, 46% got 2, 36% got 1,
and 9% got 0.

• Please talk to your TA if you got 0 or did not turn in the quiz (or get
a response).

• Project due Thursday (13 Feb) at midnight (11:59+).

• Test #1 Tuesday night 8–10PM in rooms to be announced (watch
Piazza).

• DSP students: You’ll get mail about an alternative location. Your test
will overlap the main test time.

• Alternative test time: Wednesday morning at 9AM (TBA). Please
see us if you can’t make that time.

Last modified: Tue Mar 18 16:11:23 2014 CS61A: Lecture #10 1

Separation of Concerns

• The sierpinski routine used triangle.

• To write sierpinski, I needed only to know:

– The syntactic specification of triangle: its name and number of
arguments (given by its def header), and

– Its semantic specification : what a call does or means (given by
its documentation comment).

• I did not need to know how triangle works or who else calls it.

• Likewise, triangle does not need to know

– where its arguments come from,

– who calls it, or

– what use is made of its return value or side effects.

• There is a separation of concerns between these functions.

• This is a fundamental concept in software engineering: organize pro-
grams so that you can work on one thing at a time in isolation.

Last modified: Tue Mar 18 16:11:23 2014 CS61A: Lecture #10 2

Names

Semantically, names are arbitrary; to the reader, they are part of the
documentation.

Bad: Better:

number dice rolls
true false pigged out

d dice, die

helper take turn,
find repeat

do stuff rescale figure

random
obscenity

report error

l, I, O k, m, n

Names convey meaning or purpose to
the programmer (not to the machine).

Function names should convey their
value (abs, sqrt) or effect (print)

Use the documentation comments of
functions to elaborate where neces-
sary, to indicate the types of argu-
ments and return values, and to indicate
assumptions or limitations on the argu-
ments.

Last modified: Tue Mar 18 16:11:23 2014 CS61A: Lecture #10 3

Function Comments

Comments on a function should suffice to tell the reader everything
needed to use it.

Rather than

def largest(L):

"""Find the largest value"""

k = 0

for i in range(1, len(L)):

if L[i] > L[k]:

k = i

return k

Use

def largest(L):

"""Return the index of the largest

value in L."""

k = 0

for i in range(1, len(L)):

if L[i] > L[k]:

k = i

return k

Last modified: Tue Mar 18 16:11:23 2014 CS61A: Lecture #10 4

Names and Comments

• I generally limit comments to

– Docstrings on functions (or later, on classes)

– Comments and documentation at the beginning of a module de-
scribing its purpose, conventions, authorship, copyright permis-
sions, etc.

– Comment names of significant constants.

• Avoid internal comments: they indicate places where you could make
a function shorter or use a better name:

Rather than

Compute the discriminant

d = b**2 - 4*a*c

Use

discriminant = b**2 - 4*a*c

Last modified: Tue Mar 18 16:11:23 2014 CS61A: Lecture #10 5

Refactoring

• Your comments can suggest to you that things are getting too big,
or that a function is doing to much.

• When that happens, it is time to refactor: break functions up into
more coherent pieces.

• Consider the function:

def print_averages(grade_book, out):

"""Compute the average scores for each student in

GRADE_BOOK and prints on OUT."""

• What if we just want to know the averages?

• What if we also want a different format, including other informa-
tion?

• Makes more sense, e.g., to have a get_averages function, and a more
general print routine that will print any information about students.

Last modified: Tue Mar 18 16:11:23 2014 CS61A: Lecture #10 6

Unit Testing

• The docstring tests that you execute with python3 -m doctest are
examples of unit tests.

• That is, tests on the smallest testable units of your program (func-
tions).

• Test-driven development refers to the practice of creating tests
ahead of implementation.

• Don’t wait for your program to be finished to test it.

• The doctest Python module makes it possible to run all your tests
cumulatively, watching for inadvertant errors and tracking how much
still needs to be done.

Last modified: Tue Mar 18 16:11:23 2014 CS61A: Lecture #10 7

Decorators

• You’ve seen functions on functions. They can also be used for testing
or debugging:

def trace1(fn):

"""Return a function equivalent to FN, a one-argument

function, that also prints trace output."""

def traced(x):

print(’Calling’, fn, ’on argument’, x)

return fn(x)

return traced

• To use this:

def triple(x):

return 3*x

triple = trace1(triple)

• Or, more conveniently, do the equivalent with Python’s decorators:

@trace1

def triple(x):

return 3*x

Last modified: Tue Mar 18 16:11:23 2014 CS61A: Lecture #10 8

Abstract Data Types

• An Abstract Data Type (or ADT) consists of

– A set (domain) of possible values.

– A set of operations on those values.

• ADTs are conceptual: a given programming language may or may not
have constructs specifically designed for ADT definition, but pro-
grammers can choose to organize their programs as collections of
ADTs in any case.

• We call them “abstract” because they abstract a particular behav-
ior, which we document without being specific about what the values
really consist of (their internal representations.)

Last modified: Tue Mar 18 16:11:23 2014 CS61A: Lecture #10 9

Data Structures

• The simplest ADTs are not particularly abstract: they are a collec-
tion of data values and their behavior consists entirely of selecting
or modifying those individual data values.

• We sometimes use the term data structure for these, although the
terminology is not exactly firm.

• Example: A tuple is a sequence of values. It is entirely defined by
those values.

Last modified: Tue Mar 18 16:11:23 2014 CS61A: Lecture #10 10

Rational Numbers

• The book uses “rational number” as an example of an ADT:

def make_rat(n, d):

"""The rational number N/D, assuming N, D are integers, D!=0"""

def add_rat(x, y):

"""The sum of rational numbers X and Y."""

def mul_rat(x, y):

"""The product of rational numbers X and Y."""

def numer(r):

"""The numerator of rational number R."""

def denom(r):

"""The denominator of rational number R."""

• These definitions pretend that x, y, and r really are rational num-
bers.

• But from this point of view, numer and denom are problematic. Why?

Last modified: Tue Mar 18 16:11:23 2014 CS61A: Lecture #10 11

Rational Numbers

• Problem is that “the numerator (denominator) of r” is not well-defined
for a rational number.

• If make_rat really produced rational numbers, then make_rat(2, 4)
and make_rat(1, 2) ought to be identical. So should make_rat(1, -1)
and make_rat(-1, 1).

• So a better specification would be

def numer(r):

"""The numerator of rational number R in lowest terms."""

def denom(r):

"""The denominator of rational number R in lowest terms.

Always positive."""

Last modified: Tue Mar 18 16:11:23 2014 CS61A: Lecture #10 12

Representing Rationals (I)

• The obvious representation is as a pair of integers.

• Suppose we define

def make_rat(n, d):

"""Rational number N/D, assuming N, D are integers, D!=0"""

return (n, d)

• From elementary-school math, we can then write

def add_rat(x, y):

"""The sum of rational numbers X and Y."""

(xn, xd), (yn, yd) = x, y

return (xn * yd + yn * xd, xd * yd) BAD STYLE?

def mul_rat(x, y):

"""The product of rational numbers X and Y."""

(xn, xd), (yn, yd) = x, y

return (xn * yn, xd * yd) BAD STYLE?

• What about numer and denom?

Last modified: Tue Mar 18 16:11:23 2014 CS61A: Lecture #10 13

Use the Abstraction!

Better:

def add_rat(x, y):

"""The sum of rational numbers X and Y."""

return make_rat(numer(x) * denom(y) + numer(y) * denom(x),

denom(x) * denom(y))

def mul_rat(x, y):

"""The product of rational numbers X and Y."""

return make_rat(numer(x) * numer(y), denom(x) * denom(y))

Last modified: Tue Mar 18 16:11:23 2014 CS61A: Lecture #10 14

Implementing numer and denom (I)

from fractions import gcd

fractions.gcd(a,b), for b!=0, computes the largest integer in

absolute value that evenly divides both a and b and has

the sign of b. (Not quite the "official" gcd function).

def numer(r):

"""The numerator of rational number R in lowest terms."""

n, d = r

return n // gcd(n, d)

def denom(r):

"""The denominator of rational number R in lowest terms.

Always positive."""

n, d = r

return d // gcd(n, d)

Last modified: Tue Mar 18 16:11:23 2014 CS61A: Lecture #10 15

Representing Rationals (II)

• But the preceding implementation is problematic:

– Each call to denom or numer has to recompute a value.

– Intermediate values can get quite large.

• Suggests that we always keep rationals in lowest terms.

• How does the implementation change?

Last modified: Tue Mar 18 16:11:23 2014 CS61A: Lecture #10 16

Updated Implementation

from fractions import gcd

def make_rat(n, d):

g = gcd(n, d)

return n//g, d//g

def numer(r):

return r[0]

def denom(r):

return r[1]

• What happens to add_rat and mul_rat?

• Ans: They do not change! The use of the make rat abstraction
makes it unnecessary.

Last modified: Tue Mar 18 16:11:23 2014 CS61A: Lecture #10 17

Implementing Tuples (If You Had To)

• Using “data structure” to mean “unabstract ADT” is fuzzy.

• Even tuples need to be represented.

• Python has a built-in implementation, inaccessible to the user.

• They do this for speed, but we can get the same effect with what
we already have: functions.

Last modified: Tue Mar 18 16:11:23 2014 CS61A: Lecture #10 18

Data Structures via Dispatching

def make_rat(n, d):

"""A function, r, representing the rational number N/D.

r(0) is the numerator and r(1)>0 the denominator (in lowest

terms)."""

g = gcd(n, d)

n, d = n // g, d // g

def result(key):

if key == 0:

return n

else:

return d

return result

def numer(r):

return r(0)

def denom(r):

return r(1)

• We say that the function result
dispatches on the value of key.

• The tuple in the previous repre-
sentation is now replaced by the
environment frame created by a
call to make_rat.

Last modified: Tue Mar 18 16:11:23 2014 CS61A: Lecture #10 19

�������

���������	
���

�����
	����	���
���

�������������������	��������

�	
���

����	����	
�

��

�
���	
�

�������	
�

����
	����	�

� �

 �

� �

	�����

������

��	��

���������	��������

��� �

������

��	��
�

� ��������	
����

� ����	
��
�����
���	���	�
�	������
�
	 �	���	�
�	������
�!��

$ ����%&����	�'��#��	
������(
�	

) ������������

*

+ ����
	����	���
����

, �������������
���

- �����
�������..��
���..��

/

�# ��������������������

�� ������������������#�

�� ���������������������

�$ �������������

�) ���������������������

�* �����������������

�+

�, �%���&�������
	����	��)
�+�

�- �%���&�����#�

�
�����
�

����
��� ������ ��������� ��� ���������
������

Last modified: Tue Mar 18 16:11:23 2014 CS61A: Lecture #10 20

Discussion

• You’ll sometimes see key described as a message and this technique
called message-passing, (but your current instructor hates this ter-
minology.)

• If we had persisted in defining add_rat and mul_rat using unpacking,
as originally (see slide 7), we’d now have to rewrite them.

• But by using numer and denom in add_rat and mul_rat (slide 8), we
have avoided having to touch them after this change in representa-
tion.

• The general lesson:

Try to confine each design decision in your program
to as few places as possible.

Last modified: Tue Mar 18 16:11:23 2014 CS61A: Lecture #10 21

	Lecture #10: Abstractions: From Function to Data
	Separation of Concerns
	Names
	Function Comments
	Names and Comments
	Refactoring
	Unit Testing
	Decorators
	Abstract Data Types
	Data Structures
	Rational Numbers
	Rational Numbers
	Representing Rationals (I)
	Use the Abstraction!
	Implementing numer and denom (I)
	Representing Rationals (II)
	Updated Implementation
	Implementing Tuples (If You Had To)
	Data Structures via Dispatching
	Discussion

