
Lecture #11: Sequences

Announcements

• HKN review session for Midterm 1 in 145 Dwinelle from 5-8 PM
TONIGHT.

• Rooms for midterm to be assigned by login. Please watch website
and Piazza.

• Please watch Piazza for news about TA review session on Monday.

• Alternative exams will be given in the labs on Wednesday.

• No labs next week. Also no Wednesday lecture.

Last modified: Fri Feb 21 13:16:13 2014 CS61A: Lecture #11 1

Sequences

• The term sequence refers generally to a data structure consisting
of an indexed collection of values.

• That is, there is a first, second, third value (which CS types call #0,
#1, #2, etc.

• A sequence may be finite (with a length) or infinite.

• As an object, it may be mutable (elements can change) or immutable.

• There are numerous alternative interfaces (i.e., sets of operations)
for manipulating it.

• And, of course, numerous alternative implementations.

• Today: immutable, finite sequences, recursively defined.

Last modified: Fri Feb 21 13:16:13 2014 CS61A: Lecture #11 2

A Recursive Definition

• A possible definition: A sequence consists of

– An empty sequence, or

– A first element and a sequence consisting of the rest of the ele-
ments of the sequence other than the first (its tail).

• The definition is clearly recursive (“a sequence consists of . . . and a
sequence . . . ”), so let’s call it an rlist for now.

• Suggests the following ADT interface:

# The empty rlist (unique).

empty_rlist = ...

def rlist(first, rest = empty_rlist):

"""A recursive list, r, such that first(R) is FIRST and

rest(R) is REST, which must be an rlist."""

def first(r):

"""The first item in R."""

def rest(r):

"""The tail of R: the sequence consisting of items 1, 2,...,

renumbered from 0."""

Last modified: Fri Feb 21 13:16:13 2014 CS61A: Lecture #11 3

Implementation With Pairs

• An obvious implementation uses two-element tuples (pairs). The re-
sult is called a linked list.

empty_rlist = None

def rlist(first, rest = empty_rlist):

return first, rest

def first(r):

return r[0]

def rest(r):

return r[1]

Last modified: Fri Feb 21 13:16:13 2014 CS61A: Lecture #11 4

Box-and-Pointer Diagrams for Linked Lists

• Diagrammatically, one gets structures like this:

# The sequence 1, 3, 0, 4

L = rlist(1, rlist(3, rlist(0, rlist(4, empty_rlist))))

L: 1 3 0 4

Tuple containing head Rest of list

Last modified: Fri Feb 21 13:16:13 2014 CS61A: Lecture #11 5

Adding Dimensions

Our rlists can contain anything, including other rlists:

# The sequence containing sequences (0, 1) and (2, 3)

L = rlist(rlist(0, rlist(1, empty_list)),

rlist(rlist(2, rlist(3, empty_list)),

empty_rlist))

L:

0 1 2 3

Last modified: Fri Feb 21 13:16:13 2014 CS61A: Lecture #11 6



Recursive Lists vs. Python Tuples

• In Python, tuples are not limited to pairs.

• Could have used (1, 3, 0, 4) or ((0, 1), (2, 3)).

• But there are advantages to rlists:

– For tuples, rest(L) corresponds to L[1:].

– The time and spaced required for this operation increases lin-
early with the length of L.

– But rest(L) on an rlist takes constant time and no additional space.

• On the other hand,

– Computing the length or the kth element of an rlist takes time
proportional to the length of the sequence,

– But for tuples, these are constant-time operations.

Last modified: Fri Feb 21 13:16:13 2014 CS61A: Lecture #11 7

From Recursive Structure to Recursive Algorithm

• The cases in the recursive definition of list often suggest a recur-
sive approach to implementing functions on them.

• Example: length of an rlist:

def len_rlist(s): # A sequence is:

"""The length of rlist S."""

if s == empty_rlist: # Empty or...

return 0

else:

return 1 + len_rlist(rest(s))

# A first element and

# the rest of the list

• Q: Why do we know the comment is accurate?

• A: Recursive thinking: Because we assume the comment is accurate!
(For “smaller” arguments, that is).

• Not tail recursive: can’t directly make len_rlist iterative.

Last modified: Fri Feb 21 13:16:13 2014 CS61A: Lecture #11 8

Tail Recursion (Again)

• But a slight modification makes iteration possible:

def len_rlist(s):

def len(sofar, s):

"""Return SOFAR + the length of rlist S."""

if s == empty_rlist:

return sofar

else:

return len(sofar + 1, rest(s))

len(0, s)

• We simply return the value of the recursive call to len directly, so
this version is tail recursive, and can become a loop:

def len_rlist(s):

sofar = 0

while s != empty_rlist:

sofar, s = sofar+1, rest(s)

return sofar

Last modified: Fri Feb 21 13:16:13 2014 CS61A: Lecture #11 9

Another Example: Selection

• Want to extract item #k from an rlist (number from 0).

• Recursively:

def getitem_rlist(s, k):

"""Return the element at index K of recursive list S.

Assumes K >= 0.

>>> getitem_rlist(rlist(2, rlist(3, rlist (4))), 1)

3"""

if k == 0:

return first(s)

else:

return getitem_rlist(rest(s), k-1)

Last modified: Fri Feb 21 13:16:13 2014 CS61A: Lecture #11 10

Iterative getitem_rlist

• From the previous version:

def getitem_rlist(s, k):

if k == 0:

return first(s)

else:

return getitem_rlist(rest(s), k-1)

• Can transform into an iterative version:

def getitem_rlist(s, k):

"""Return the element at index K of recursive list S.

Assumes K >= 0."""

while k != 0:

s, k = rest(s), k-1

return first(s)

Last modified: Fri Feb 21 13:16:13 2014 CS61A: Lecture #11 11

Applying to All Elements

• Given an rlist, I’d like to create the list of the squares of its ele-
ments:

def square_rlist(s):

"""The list of squares of the elements of rlist S."""

if s == empty_rlist:

return empty_rlist:

else:

return rlist(first(s)**2, square_rlist(rest(s)))

Last modified: Fri Feb 21 13:16:13 2014 CS61A: Lecture #11 12



On to Higher Orders!

def map_rlist(f, s):

"""The list of values F(x) for each element x of S in order."""

if s == empty_rlist:

return empty_rlist

else:

return rlist(f(first(s)), map_rlist(f, rest(s)))

• So square_rlist(L) is map_rlist(lambda x:x**2, L).

• [Python 3 produces a different kind of result from its map function;
we’ll get to it.]

• Iterative version difficult here!

Last modified: Fri Feb 21 13:16:13 2014 CS61A: Lecture #11 13

Extending rlists

• Joining two lists together is called “appending” in most languages.
Python uses “append” to mean “add an item,” and uses the term “ex-
tend” for joining lists.

def extend_rlist(left, right):

"""The sequence of items of rlist ‘left’

followed by the items of ‘right’."""

if left == empty_rlist:

return right

else:

return rlist(first(left), extend_rlist(rest(left), right))

• Again, iterative version is difficult.

Last modified: Fri Feb 21 13:16:13 2014 CS61A: Lecture #11 14

Reversing

• Given a sequence represented by an rlist L, how can I create the
reverse sequence, reverse_rlist(L)?

L = rlist(1, rlist(3, rlist(0, rlist(4, empty_rlist))))

R = reverse_rlist(L)

L: 1 3 0 4

R: 4 0 3 1

• What is the reverse of empty_rlist? empty_rlist.

• Given an rlist L, what is the relationship between first(L), rest(L),
and R=reverse_rlist(L)?

R = extend_rlist(reverse_rlist(rest(L)),

rlist(first(L),empty_rlist))

Last modified: Fri Feb 21 13:16:13 2014 CS61A: Lecture #11 15

Iterative Reversing

• The iterative version of rlist_reverse is actually not bad.

• Rlists are most conveniently build from the end (because a tuple,
once created, can’t be changed).

• The last item of a reversed list is the first item of the original list.

• This leads to the following tail recursion:

def reverse_rlist(L):

def reverse_extend(to_do, already_done):

"""The result of extending ALREADY_DONE with

the reverse of TO_DO."""

if to_do == empty_rlist:

return empty_rlist

else:

return reverse_extend(rest(to_do),

rlist(first(to_do), already_done))

reverse_extend(L, empty_rlist)

• Iterative version?

Last modified: Fri Feb 21 13:16:13 2014 CS61A: Lecture #11 16


	Lecture #11: Sequences
	Sequences
	A Recursive Definition
	Implementation With Pairs
	Box-and-Pointer Diagrams for Linked Lists
	Adding Dimensions
	Recursive Lists vs. Python Tuples
	From Recursive Structure to Recursive Algorithm
	Tail Recursion (Again)
	Another Example: Selection
	Iterative getitem_rlist
	Applying to All Elements
	On to Higher Orders!
	Extending rlists
	Reversing
	Iterative Reversing

