
Lecture #12: Python Sequences: Tuples

Last modified: Tue Mar 18 18:02:30 2014 CS61A: Lecture #12 1

Recursive Lists vs. Tuples

• Rlists tend to divide problems into “what to do with the first item”
and “what to do with the rest of the list.”

• This reflects the operations on them (first, rest, rlist).

• But accessing items of a Python tuple is uniform (x[i]), and the style
of algorithms is correspondingly different.

Last modified: Tue Mar 18 18:02:30 2014 CS61A: Lecture #12 2

For loops

• Python for loops operate on sequences of various types:

for targets in sequence expression:
repeated statements

• First, evaluate sequence expression to get a sequence of values.

• Then, for each value, V , in that sequence (left-to-right):

– Assign V to targets.

– Execute the repeated statements.

• Usually, targets is just a simple variable,

• But can be anything that can go to the left of an assign operator.

Last modified: Tue Mar 18 18:02:30 2014 CS61A: Lecture #12 3

Examples

Program Output

L = (1, 2, 3)

for i in L:

print(i)

1

2

3

for i in 1, 2, 3:

Same as for i in (1, 2, 3):

print(i)

1

2

3

for p in (0, "Fwd"), (2, "Back"), (3, "Turn"):

print(p[1], p[0])

Fwd 0

Back 2

Turn 3

for lft, rght in (0, "Fwd"), (2, "Back"), (3, "Turn"):

print(rght, lft)

Fwd 0

Back 2

Turn 3

Last modified: Tue Mar 18 18:02:30 2014 CS61A: Lecture #12 4

Ranges

• A range in Python is a kind of sequence, and works that way in a for
loop.

>>> range(1, 5) # The integers from 1 up to but not including 5.

range(1, 5)

>>> range(5) # Shorthand for range(0, 5)

range(0, 5)

>>> L = range(1, 5)

>>> tuple(L) # Convert to tuple

(1, 2, 3, 4)

>>> L[2]

3

>>> len(L)

4

>>> tuple(range(0, 10, 2))

(0, 2, 4, 6, 8)

>>> tuple(range(5, 0, -1))

(5, 4, 3, 2, 1)

>>> for i in range(3, 8):

... print(i, end="; ")

3; 4; 5; 6; 7;

Last modified: Tue Mar 18 18:02:30 2014 CS61A: Lecture #12 5

Operations on Python Sequences

• Add up the values in sequence L:

sum = 0

for p in L:

sum += p # Or sum = sum + p

• reduction: generalization to operations other than addition:

from operator import *

def reduce(f, seq, init): # (See also functools.reduce)

"""If SEQ is a sequence of length n>=0, returns sn, where

s0 = INIT, s1=F(s0, SEQ[0]), s2=F(s1, SEQ[1]), ...

>>> L = (2, 3, 4)

>>> reduce(add, L, 0)

9

>>> reduce(mul, L, 1)

24

>>> reduce(lambda x, y: rlist(y, x), L, empty_rlist)

(4, (3, (2, None)))

"""

result =

for p in seq:

result =

return result
Last modified: Tue Mar 18 18:02:30 2014 CS61A: Lecture #12 6

Operations on Python Sequences

• Add up the values in sequence L:

sum = 0

for p in L:

sum += p # Or sum = sum + p

• reduction: generalization to operations other than addition:

from operator import *

def reduce(f, seq, init): # (See also functools.reduce)

"""If SEQ is a sequence of length n>=0, returns sn, where

s0 = INIT, s1=F(s0, SEQ[0]), s2=F(s1, SEQ[1]), ...

>>> L = (2, 3, 4)

>>> reduce(add, L, 0)

9

>>> reduce(mul, L, 1)

24

>>> reduce(lambda x, y: rlist(y, x), L, empty_rlist)

(4, (3, (2, None)))

"""

result = init

for p in seq:

result =

return result
Last modified: Tue Mar 18 18:02:30 2014 CS61A: Lecture #12 6

Operations on Python Sequences

• Add up the values in sequence L:

sum = 0

for p in L:

sum += p # Or sum = sum + p

• reduction: generalization to operations other than addition:

from operator import *

def reduce(f, seq, init): # (See also functools.reduce)

"""If SEQ is a sequence of length n>=0, returns sn, where

s0 = INIT, s1=F(s0, SEQ[0]), s2=F(s1, SEQ[1]), ...

>>> L = (2, 3, 4)

>>> reduce(add, L, 0)

9

>>> reduce(mul, L, 1)

24

>>> reduce(lambda x, y: rlist(y, x), L, empty_rlist)

(4, (3, (2, None)))

"""

result = init

for p in seq:

result = f(result, p)

return result
Last modified: Tue Mar 18 18:02:30 2014 CS61A: Lecture #12 6

Building Tuples: the Basics

• As for rlists, can construct tuples from other tuples:

>>> L = (1, 2)

>>> L + (3, 4) # Extend

(1, 2, 3, 4)

>>> L + (5,)

(1, 2, 5)

>>> R = (3, 4, 5, 6, 7, 8)

>>> R[0:3] + L + R[4:]

Last modified: Tue Mar 18 18:02:30 2014 CS61A: Lecture #12 7

Building Tuples: the Basics

• As for rlists, can construct tuples from other tuples:

>>> L = (1, 2)

>>> L + (3, 4) # Extend

(1, 2, 3, 4)

>>> L + (5,)

(1, 2, 5)

>>> R = (3, 4, 5, 6, 7, 8)

>>> R[0:3] + L + R[4:]

(3, 4, 5, 1, 2, 7, 8)

Last modified: Tue Mar 18 18:02:30 2014 CS61A: Lecture #12 7

Building Tuples: ’map’ and ’filter’

• So we could write these (they’re actually builtin functions):

def map(f, seq):

"""Assuming SEQ is the sequence containing s1, s2, ..., sn,

returns the tuple (F(s1), F(s2), ..., F(sn))."""

result = ()

for p in seq:

result = result + (f(p),)

return result

def filter(pred, seq):

"""Assuming SEQ is the sequence containing s1, s2, ..., sn,

returns tuple containing only those si for which PRED(si) is true."""

result = ()

for p in seq:

result =

return result

Last modified: Tue Mar 18 18:02:30 2014 CS61A: Lecture #12 8

Building Tuples: ’map’ and ’filter’

• So we could write these (they’re actually builtin functions):

def map(f, seq):

"""Assuming SEQ is the sequence containing s1, s2, ..., sn,

returns the tuple (F(s1), F(s2), ..., F(sn))."""

result = ()

for p in seq:

result = result + (f(p),)

return result

def filter(pred, seq):

"""Assuming SEQ is the sequence containing s1, s2, ..., sn,

returns tuple containing only those si for which PRED(si) is true."""

result = ()

for p in seq:

result = result + (p,) if pred(p) else result

return result

Last modified: Tue Mar 18 18:02:30 2014 CS61A: Lecture #12 8

Basic Comprehensions

• But building large tuples this way becomes horrendously slow, much
slower than the analogous operations on rlists [why?].

• We’ll see one way to deal with that problem in the next lecture
(mutable sequences), but for now. . .

• Python has a couple of ways of specifying a list in one expression:

(expression for targets in sequence expression)

creates a sequence that’s kind of like

seq = ()

for targets in sequence expression:
seq = seq + (expression,)

. . . but much faster. (It’s actually a generator, not a tuple, but can
be converted to one with tuple. More on this later.)

• For example,

>>> tuple((k * k for k in range(5)))

(0, 1, 4, 9, 16)

Last modified: Tue Mar 18 18:02:30 2014 CS61A: Lecture #12 9

More Elaborate Comprehensions

• It’s possible to use multiple for clauses as well:

>>> tuple(((i, j) for i in range(2) for j in range(3)))

((0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2))

>>> tuple(((i, j) for i in range(3) for j in range(i + 1)))

((0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2))

• Finally, if clauses filter a range:

>>> tuple((k for k in range(50) if k % 7 == 0 or k % 11 == 0))

(0, 7, 11, 14, 21, 22, 28, 33, 35, 42, 44, 49)

filter is built in

>>> tuple(filter(lambda x: k % 7 == 0 or k % 11 == 0, range(50)))

(0, 7, 11, 14, 21, 22, 28, 33, 35, 42, 44, 49)

Now you try to get the same result:

>>> def filter(pred, seq): return

Last modified: Tue Mar 18 18:02:30 2014 CS61A: Lecture #12 10

More Elaborate Comprehensions

• It’s possible to use multiple for clauses as well:

>>> tuple(((i, j) for i in range(2) for j in range(3)))

((0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2))

>>> tuple(((i, j) for i in range(3) for j in range(i + 1)))

((0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2))

• Finally, if clauses filter a range:

>>> tuple((k for k in range(50) if k % 7 == 0 or k % 11 == 0))

(0, 7, 11, 14, 21, 22, 28, 33, 35, 42, 44, 49)

filter is built in

>>> tuple(filter(lambda x: k % 7 == 0 or k % 11 == 0, range(50)))

(0, 7, 11, 14, 21, 22, 28, 33, 35, 42, 44, 49)

Now you try to get the same result:

>>> def filter(pred, seq): return (x for x in seq if pred(x))

Last modified: Tue Mar 18 18:02:30 2014 CS61A: Lecture #12 10

A Sequence Problem

def partition(L, x):

"""Returns result of rearranging the elements of L so that

all items < X appear before all items >= X,

and all are otherwise in their original order.

>>> L = (0, 9, 6, 2, 5, 11, 1)

>>> partition(L, 5)

(0, 2, 1, 9, 6, 5, 11)

"""

return

Last modified: Tue Mar 18 18:02:30 2014 CS61A: Lecture #12 11

A Sequence Problem

def partition(L, x):

"""Returns result of rearranging the elements of L so that

all items < X appear before all items >= X,

and all are otherwise in their original order.

>>> L = (0, 9, 6, 2, 5, 11, 1)

>>> partition(L, 5)

(0, 2, 1, 9, 6, 5, 11)

"""

return tuple((y in L if y < x)) + tuple((y in L if y >= x))

Last modified: Tue Mar 18 18:02:30 2014 CS61A: Lecture #12 11

Another Sequence Problem

def collapse_runs(L):

"""Return result of removing the second and subsequent consecutive

duplicates of values in L,

>>> x = (1, 2, 2, 1, 1, 1, 2, 0, 0)

>>> collapse_runs(x)

(1, 2, 1, 2, 0)

"""

return

Last modified: Tue Mar 18 18:02:30 2014 CS61A: Lecture #12 12

Another Sequence Problem

def collapse_runs(L):

"""Return result of removing the second and subsequent consecutive

duplicates of values in L,

>>> x = (1, 2, 2, 1, 1, 1, 2, 0, 0)

>>> collapse_runs(x)

(1, 2, 1, 2, 0)

"""

return tuple((L[k] for k in range(len(L)) if k==0 or L[k-1]!=L[k]))

Last modified: Tue Mar 18 18:02:30 2014 CS61A: Lecture #12 12

	Lecture #12: Python Sequences: Tuples
	Recursive Lists vs. Tuples
	For loops
	Examples
	Ranges
	Operations on Python Sequences
	Building Tuples: the Basics
	Building Tuples: 'map' and 'filter'
	Basic Comprehensions
	More Elaborate Comprehensions
	A Sequence Problem
	Another Sequence Problem

