
Lecture #15: OOP

Public Service Announcement: Hackers@Berkeley will be hosting a
HackJam this Saturday—

• Low-pressure hackathon for both experienced makers and newbies.

• Work together, eat food, and

• Hack something together in just 12 hours.

• Workshops to help you make something cool.

• Judges, prizes, and most importantly - food.

• RSVP by joining the Facebook event page:
https://www.facebook.com/events/1448019312098352/

Guerrilla Section #2: Extra groupwork-based section on mastering
Recursion. Sunday (March 2nd) at 4pm in 271 Soda (cardkey entry).
Check Piazza for details.

Last modified: Tue Mar 18 16:17:53 2014 CS61A: Lecture #15 1

https://www.facebook.com/events/1448019312098352/

Extending the Mutable Objects: Classes

• We’ve seen a variety of builtin mutable types (sets, dicts, lists).

• . . . And a general way of constructing new ones (functions referenc-
ing nonlocal variables).

• But in actual practice, we use a different way to construct new
types—syntax that leads to clearer programs that are more con-
venient to read and maintain.

• The Python class statement defines new classes or types, creating
new, vaguely dictionary-like varieties of object.

Last modified: Tue Mar 18 16:17:53 2014 CS61A: Lecture #15 2

Simple Classes: Bank Account

class Account: # Type name

constructor method

def __init__(self, initial_balance):

self._balance = initial_balance

def balance(self): # instance method

return self._balance # instance variable

def deposit(self, amount):

if amount < 0:

raise ValueError("negative deposit")

self._balance += amount

def withdraw(self, amount):

if 0 <= amount <= self.__balance:

self._balance -= amount

else: raise ValueError("bad withdrawal")

>>> mine = Account(1000)

>>> mine.deposit(100)

>>> mine.balance()

1100

>>> mine.withdraw(200)

>>> mine.balance()

900

Last modified: Tue Mar 18 16:17:53 2014 CS61A: Lecture #15 3

Class Concepts

• Classes beget instances, created by “calling” the class: Account(1000).

• Each such Account object (instance) contains attributes, accessed
using object.attribute notation.

• The defs inside classes define function-valued attributes calledmeth-
ods (full names: Account.balance, etc.) Each object has a copy.

• A call mine.deposit(100) is essentially Account.deposit(mine, 100).

• By convention, we therefore call the first argument of a method
something like “self” to indicate that it is the object from which we
got the method.

• When an object is created, the special __init__ method is called
first.

• Each Account object has other attributes (_balance), which we cre-
ate by assignment, again using dot notation.

Last modified: Tue Mar 18 16:17:53 2014 CS61A: Lecture #15 4

Philosophy

• Just as def defines functions and allows us to extend Python with
new operations, class defines types and allows us to extend Python
with new kinds of data.

• What do we want out of a class?

– A way of defining named new types of data.

– A means of defining and accessing state for these objects.

– A means of defining and using operations specific to these ob-
jects.

– In particular, an operation for initializing the state of an object.

– A means of creating new objects.

Last modified: Tue Mar 18 16:17:53 2014 CS61A: Lecture #15 5

Applied Philosophy

• The Account type illustrates how we do each of these

class Account: Define named new type

def __init__(self, initial_balance): How to initialize

self._balance = initial_balance Create/modify state

def balance(self): Define new operation on Accounts

return self._balance Access state of an Account

...

myAccount = Account(1000) Create a new Account object,

print(myAccount.balance()) Operate on an Account object.

Last modified: Tue Mar 18 16:17:53 2014 CS61A: Lecture #15 6

Class Attributes

• Things like _balance, __init__, and deposit are attributes of in-
stances of classes.

• Sometimes, a quantity applies to a class type as a whole, not a spe-
cific instance.

• For example, with Accounts, you might want to keep track of the
total amount deposited from all Accounts.

• This is an example of a class attribute.

Last modified: Tue Mar 18 16:17:53 2014 CS61A: Lecture #15 7

Class Attributes in Python

class Account:

_total_deposits = 0 # Define/initialize a class attribute

def __init__(self, initial_balance):

self._balance = initial_balance

Account._total_deposits += initial_balance # Use the class name

def deposit(self, amount):

self._balance += amount

Account._total_deposits += amount

@staticmethod

def total_deposits(): # Define a class method.

return Account._total_deposits

>>> acct1 = Account(1000)

>>> acct2 = Account(10000)

>>> acct1.deposit(300)

>>> Account.total_deposits()

11300

>>> acct1.total_deposits()

11300

Last modified: Tue Mar 18 16:17:53 2014 CS61A: Lecture #15 8

Modeling Attributes in Python

• Unlike C++ or Java, Python takes a very dynamic approach.

• Classes and class instances behave rather like environment frames.

def Account:

_total_deposits = 0

def __init__(...):

self._balance = ...

Account._total_deposits = ...

acct1 = Account(1000)

acct2 = Account(10000)

acct1.deposit(300)

• Curved boxes are objects.

• Flat-bottomed boxes are class
objects.

• ‘x.y’: look for ‘y’ starting at ‘x’

Account:

total deposits: 11300
init : . . .

balance: . . .
deposit: . . .
withdraw: . . .

acct1:

acct2:

balance: 1300

balance: 10000

Last modified: Tue Mar 18 16:17:53 2014 CS61A: Lecture #15 9

Assigning to Attributes

• Assigning to an attribute of an object (including a class) is like as-
signing to a local variable: it creates a new binding for that attribute
in the object selected from (i.e., referenced by the expression on
the left of the dot).

>>> def Value:

... value = 0

...

>>> val1 = Value()

>>> val2 = Value()

>>> val2.value = 3

>>> val1.value

0

>>> Value.value

0

>>> val2.value

3

Value: value: 0

val1:

val2: value: 3

Last modified: Tue Mar 18 16:17:53 2014 CS61A: Lecture #15 10

Methods

• Consider

>>> def Foo:

... def set(self, x):

... self.value = x

>>> aFoo = Foo()

>>> aFoo.set(13) # The first parameter of set is aFoo.

>>> aFoo.value

13

>>> aFoo.set

<bound method Foo.set of ...>

• Selection of attributes from objects (other than classes) that were
defined as functions in the class does something to those attributes
so that they take one fewer parameters: first parameter is bound
to the selected-from object.

• Effect of selecting aFoo.set is like calling partial_bind(aFoo, Foo.set),
where

def partial_bind(obj, func): return lambda x: func(obj, x)

Last modified: Tue Mar 18 16:17:53 2014 CS61A: Lecture #15 11

	Lecture #15: OOP
	Extending the Mutable Objects: Classes
	Simple Classes: Bank Account
	Class Concepts
	Philosophy
	Applied Philosophy
	Class Attributes
	Class Attributes in Python
	Modeling Attributes in Python
	Assigning to Attributes
	Methods

