
Lecture #16: Inheritance and Interfaces

Last modified: Tue Mar 18 16:17:52 2014 CS61A: Lecture #16 1

Inheritance

• Classes are often conceptually related, sharing operations and be-
havior.

• One important relation is the subtype or “is-a” relation.

• Examples: A car is a vehicle. A square is a plane geometric figure.

• When multiple types of object are related like this, one can often
define operations that will work on all of them, with each type ad-
justing the operation appropriately.

• In Python (like C++ and Java), language mechanisms called inheri-
tance and dynamic method selection accomplish this.

Last modified: Tue Mar 18 16:17:52 2014 CS61A: Lecture #16 2

Example: Geometric Plane Figures

• Want to define a collection of types that represent polygons (squares,
trapezoids, etc.).

• First, what are the common characteristics that make sense for all
polygons?

class Polygon:

def is_simple(self):

"""True iff I am simple (non-intersecting)."""

def area(self): ...

def bbox(self):

"""(xlow, ylow, xhigh, yhigh) of bounding rectangle."""

def num_sides(self): ...

def vertices(self):

"""My vertices, ordered clockwise, as a sequence

of (x, y) pairs."""

def describe(self):

"""A string describing me."""

• The point here is mostly to document our concept of Polygon, since
we don’t know how to implement any of these in general.

Last modified: Tue Mar 18 16:17:52 2014 CS61A: Lecture #16 3

Partial Implementations

Even though we don’t know anything about Polygons, we can give default
implementations.

class Polygon:

def is_simple(self): raise NotImplemented # (see next slide)

def area(self): raise NotImplemented

def vertices(self): raise NotImplemented

def bbox(self):

V = self.vertices()

xlow, ylow = xhigh, yhigh = V[0]

for x, y in V[1:]:

xlow, ylow = min(x, xlow), min(y, ylow),

xhigh, yhigh = max(x, xhigh), max(y, yhigh),

return xlow, ylow, xhigh, yhigh

def num_sides(self): return len(self.vertices())

def describe(self):

return "A polygon with vertices {0}".format(self.vertices())

Last modified: Tue Mar 18 16:17:52 2014 CS61A: Lecture #16 4

Quick Aside: raise

• The statement raise NotImplemented is said to raise an exception.

• Usually used to signal an error (“exceptional condition”).

• But sometimes used for regular programming (iterators later in this
lecture).

• In place of NotImplemented, can use any subtype of the built-in
class BaseException.

• And now, back to Polygons.

Last modified: Tue Mar 18 16:17:52 2014 CS61A: Lecture #16 5

Specializing Polygons

• At this point, we can introduce simple (non-intersecting) polygons,
for which there is a simple area formula.

class SimplePolygon(Polygon):

def is_simple(self): return True

def area(self):

a = 0.0

V = self.vertices()

for i in range(len(V)-1):

a += V[i][0] * V[i+1][1] - V[i+1][0]*V[i][1]

return -0.5 * a

• This says that a SimplePolygon is a kind of Polygon, and that the
attributes of Polygon are to be inherited by simple Polygon.

• So far, none of these Polygons are much good, since they have no
defined vertices.

• We say that Polygon and SimplePolygon are abstract types.

Last modified: Tue Mar 18 16:17:52 2014 CS61A: Lecture #16 6



A Concrete Type

• Finally, a square is a type of simple Polygon:

class Square(SimplePolygon):

def __init__(self, xll, yll, side):

"""A square with lower-left corner at (xll,yll) and

given length on a side."""

self._x = xll

self._y = yll

self._s = side

def vertices(self):

x0, y0, s = self._x, self._y, self._s

return ((x0, y0), (x0, y0+s), (x0+s, y0+s),

(x0+s, y0), (x0, y0))

def describe(self):

return "A {0}x{0} square with lower-left corner ({1},{2})" \

.format(self._s, self._x, self._y)

• Don’t have to define area,, etc., since the defaults work.

• We chose to override describe to give a more specific description.
Last modified: Tue Mar 18 16:17:52 2014 CS61A: Lecture #16 7

Inheritance Explained

• Inheritance (in Python) works like nested environment frames.

Polygon:

is simple: . . .
area: . . .
bbox: . . .
num sides: . . .
vertices: . . .
describe: . . .

is simple: . . .
area: . . .

init : . . .
vertices: . . .
describe: . . .

SimplePolygon:

Square:

x: 5
y: 6
s: 10

Square(5,6,10)

Last modified: Tue Mar 18 16:17:52 2014 CS61A: Lecture #16 8

Using Base Types

• Sometimes, we want an overriding method in a subtype to augment
rather than totally replace an existing method.

• That means that we have to call the original version of the method
within the overriding method somehow.

• Can’t just do an ordinary method call on self, since that would cause
infinite recursion.

• Fortunately, we can explicitly ask for the original version of the
method by selecting from the class.

Last modified: Tue Mar 18 16:17:52 2014 CS61A: Lecture #16 9

Example: “Memoization”

• Suppose we have

class Evaluator:

def value(self, x):

some expensive computation that depends only on x

class FastEvaluator(Evaluator):

def __init__(self):

self.__memo_table = {} # Maps arguments to results

def value(self, x):

"""A memoized value computation"""

if x not in self.__memo_table:

self.__memo_table[x] = Evaluator.value(self, x)

return self.__memo_table[x]

• FastEvaluator.value must call the .value method of its base (super)
class, but we can’t just say self.value(x), since that gives an infinite
recursion.

• So we search for .value starting in Evaluator, as plain function.

Last modified: Tue Mar 18 16:17:52 2014 CS61A: Lecture #16 10

super()

• Usually, when (as in FastEvaluator) we want to call a method we are
overriding, we want to clearly mark this fact.

• So, the usual way to write FastEvaluator is like this:

class FastEvaluator(Evaluator):

def __init__(self):

self.__memo_table = {} # Maps arguments to results

def value(self, x):

"""A memoized value computation"""

if x not in self.__memo_table:

self.__memo_table[x] = super().value(x)

return self.__memo_table[x]

Last modified: Tue Mar 18 16:17:52 2014 CS61A: Lecture #16 11

Generic Programming

• Consider the function find:

def find(L, x, k):

"""Return the index in L of the kth occurrence of x (k>=0),

or None if there isn’t one."""

for i in range(len(L)):

if L[i] == x:

if k == 0:

return i

k -= 1

• This same function works on lists, tuples, strings, and (if the keys
are consecutive integers) dicts.

• In fact, it works for any list L for which len and indexing work as
they do for lists and tuples.

• That is, find is generic in the type of L.

Last modified: Tue Mar 18 16:17:52 2014 CS61A: Lecture #16 12



The Idea of an Interface

• In Python, this means any type that fits the following interface:

class SequenceLike:

def __len__(self):

"""My length, as a non-negative integer."""

def __getitem__(self, k):

"""My kth element, where 0 <= k < self.__len__()"""

(for which len(L) and L[. . . ] are “syntactic sugar.”)

• This is one way to describe an interface, which in a programming
language consists of

– A syntactic specification (operation names, numbers of parame-
ters), and

– A semantic specification—its meaning or behavior (given here by
English-language comments.)

• Generic functions are written assuming only that their inputs honor
particular interfaces.

• The fewer the assumptions in those interfaces, therefore, the more
general (and reusable) the function.

Last modified: Tue Mar 18 16:17:52 2014 CS61A: Lecture #16 13

Supertypes as Interfaces

• We call the types that a Python class inherits from its supertypes
or base types (and the defined class, therefore, is a subtype).

• Good programming practice requires that we treat our supertypes
as interfaces, and adhere to them in the subtypes.

• For example, were we to write

class MyQueue(SequenceLike):

def __len__(self): ...

def __getitem__(self, k): ...

then good practice says that MyQueue.__len__ should take a single
parameter and return a non-negative integer, and that MyQueue.__getitem__
should accept an integer between 0 and the value of self.__len__()

• Python doesn’t actually enforce either of these provisions; it’s up to
programmers to do so.

• Other languages (like C++, Java, or Ada) enforce the syntactic part
of the specification.

Last modified: Tue Mar 18 16:17:52 2014 CS61A: Lecture #16 14

Duck Typing

• A statically typed language (such as Java) requires that you specify
a type for each variable or parameter, one that specifies all the
operations you intend to use on that variable or parameter.

• To create a generic function, therefore, your parameters’ types
must be subtypes of some particular interface.

• You can do this in Python, too, but it is not a requirement.

• In fact, our find function will work on any object that responds ap-
propriately to __len__ and __getitem__, regardless of the object’s
type.

• This property is sometimes called duck typing: “This parameter must
be a duck, and if it walks like a duck and quacks like a duck, we’ll say
it is a duck.”

• In sum, an explicit supertype is not required in Python to get the
benefits of generic programming, but it can help document what
we’re doing.

Last modified: Tue Mar 18 16:17:52 2014 CS61A: Lecture #16 15

Consequences of Good Practice

• If we obey the supertype-as-interface guideline, then we can pass
any object that has a subtype of SequenceLike to find and expect it
to work.

• This fact is an example of what is called the Liskov Substitution
Principle, after Prof. Barbara Liskov of MIT, who is generally cred-
ited with enunciating it.

Last modified: Tue Mar 18 16:17:52 2014 CS61A: Lecture #16 16

Interface as Documentation

• The interface (especially its documentation comments) provides a
contract between clients of the interface and its subtypes—implementations
of the interface:

“I, the implementor, agree that all the subclasses I define
will conform to the signature and comments in this interface,
as long as you, the client, obey any restrictions specified in
the interface.”

• Since Python does not check or enforce the consistency of super-
types and subtypes, use of the guideline is a matter of individual
discipline.

• Enforced or not, the interface type provides a convenient place to
document the contract.

• But even when using duck typing, good practice requires that we doc-
ument the assumptions made by the implementor about parameters
to methods (what methods they have, in particular).

Last modified: Tue Mar 18 16:17:52 2014 CS61A: Lecture #16 17

Example: The repr Method

• When the interpreter prints the value of an expression, it must first
convert that value to a (printable) string.

• To do so, it calls the __repr__() method of the value, which is sup-
posed to return a string that suggests how you’d create the value in
Python.

>>> "Hello"

’Hello’

>>> print(repr("Hello"))

’Hello’

>>> repr("Hello") # What does the interpreter print?

• (As a convenience, the built-in function repr(x) calls x.__repr__.)

• User-defined classes can define their own __repr__ method to con-
trol how the interpreter prints them (see HW#6).

Last modified: Tue Mar 18 16:17:52 2014 CS61A: Lecture #16 18



Example: The str Method

• When the print function prints a value, it calls the __str__() method
to find out what string to print.

• The constructor for the string type, str, does the same thing.

• Again, you can define your own __str__ on a class to control this
behavior. (The default is just to call __repr__)

>>> class rational:

... def __init__(num, den): ...

... def __str__(self):

... if self.numer() == 0: return "0"

... elif self.denom() == 1: return str(self.numer())

... else: return "{0}/{1}".format(self.numer(), self.denom())

...

>>> rational(3,4)

3/4

>>> rational(5, 1)

5

Last modified: Tue Mar 18 16:17:52 2014 CS61A: Lecture #16 19


	Lecture #16: Inheritance and Interfaces
	Inheritance
	Example: Geometric Plane Figures
	Partial Implementations
	Quick Aside: raise
	Specializing Polygons
	A Concrete Type
	Inheritance Explained
	Using Base Types
	Example: ``Memoization''
	super()
	Generic Programming
	The Idea of an Interface
	Supertypes as Interfaces
	Duck Typing
	Consequences of Good Practice
	Interface as Documentation
	Example: The __repr__ Method
	Example: The __str__ Method

