
Lecture #17: Abstraction Support: Exceptions,
Operators, Properties

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #17 1

Failed preconditions

• Part of the contract between the implementor and client is the set
of preconditions under which a function, method, etc. is supposed
to operate.

• Example:

class Rational:

def __init__(self, x, y):

"""The rational number x/y. Assumes that x and y

are ints and y != 0."""

• Here, “x and y are ints and y!=0” is a precondition on the client.

• So what happens when the precondition is not met?

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #17 2

Programmer Errors

• Python has preconditions of its own.

• E.g., type rules on operations: 3 + (2, 1) is invalid.

• What happens when we (programmers) violate these preconditions?

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #17 3

Outside Events

• Some operations may entail the possibility of errors caused by the
data or the environment in which a program runs.

• I/O over a network is a common example: connections go down; data
is corrupted.

• User input is another major source of error: we may ask to read an
integer numeral, and be handed something non-numeric.

• Again, what happens when such errors occur?

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #17 4

Possible Repsonses

• One approach is to take the point of view that when a precondition is
violated, all bets are off and the implementor is free to do anything.

– Corresponds to a logical axiom: False ⇒ True.

– But not a particularly helpful or safe approach.

• One can adopt a convention in which erroneous operations return
special error values.

– Feasible in Python, but less so in languages that require specific
types on return values.

– Used in the C library, but can’t be used for non-integer-returning
functions.

– Error prone (too easy to ignore errors).

– Cluttered (reader is forced to wade through a lot of error-handling
code, a distraction from the main algorithm).

• Numerous programming languages, including Python, support a gen-
eral notion of exceptional condition or exception with supporting
syntax and semantics that separate error handling from main pro-
gram logic.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #17 5

Exceptions

• An exception mechanism is a control structure that

– Halts execution at one point in a program (called raising or throw-
ing an exception).

– Resumes execution at some other, previously designated point in
the program (called catching or handling an exception).

• In Python, the raise statement throws exceptions, and try state-
ments catch them:

def f0(...):

try:

g0(...) # 1. Call of g...

OTHER STUFF # Skipped

except:

handle oops # 3. Handle problem

...

def g1(...): # Eventually called by g0, possibly many calls down

if detectError():

raise Oops # 2. Raise exception

MORE # Skipped

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #17 6

Communicating the Reason

• Normally, the handler would like to know the reason for an excep-
tion.

• “Reason,” being a noun, suggests we use objects, which is what Python
does.

• Python defines the class BaseException. It or any subclass of it may
convey information to a handler. We’ll call these exception classes.

• BaseClassException carries arbitrary information as if declared:

class BaseException:

def __init__(self, *args):

self.args = args

...

• The raise statement then packages up and sends information to a
handler:

raise ValueError("x must be positive", x, y)

raise ValueError # Short for raise ValueError()

e = ValueError("exceptions are just objects!")

raise e # So this works, too

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #17 7

Handlers

• A function indicates that something is wrong; it is the client (caller)
that decides what to do about it.

• The try statement allows one to provide one or more handlers for
a set of statements, with selection based on the type of exception
object thrown.

try:

assorted statements
except ValueError:

print("Something was wrong with the arguments")

except EnvironmentError: # Also catches subtypes IOError, OSError

print("The operating system is telling us something")

except: # Some other exception

print("Something wrong")

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #17 8

Retrieving the Exception

• So far, we’ve just looked at exception types.

• To get at the exception objects, use a bit more syntax:

try:

assorted statements
except ValueError as exc:

print("Something was wrong with the arguments: {0}", exc)

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #17 9

Cleaning Up and Reraising

• Sometimes we catch an exception in order to clean things up before
the real handler takes over.

inp = open(aFile)

try:

Assorted processing
inp.close()

except:

inp.close()

raise # Reraise the same exception

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #17 10

Finally Clauses

• More generally, we can clean things up regardless of how we leave
the try statement:

for i in range(100)

try:

setTimer(10) # Set time limit

if found(i):

break

longComputationThatMightTimeOut()

finally:

cancelTimer()

Continue with ’break’ or with exception

• This fragment will always cancel the timer, whether the loop ends
because of break or a timeout exception.

• After which, it carries on whatever caused the try to stop.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #17 11

Standard Exceptions

• See the Python library for a complete rundown.

• We’ll often encounter ValueError (inappropriate values), Attribu-
teError (x.foo, where there is no foo in x), TypeError, OSError
(bad system call), IOError (such as nonexistent files).

• Other exceptions are not errors, but are used because raise is a
convenient way to achieve some effect:

– StopIteration: see last lecture.

– SystemExit: Results from sys.exit(n), which is intended to end a
program.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #17 12

Example: Implementing Iterators

• An iterator is an abstraction device for hiding the representation
of a collection of values.

• The for statement is actually a generic control construct with the
following meaning (well, Python adds a few more bells and whistles):

for x in C:

S MEANS

tmp_iter = C.__iter__()

try:

while True:

x = tmp_iter.__next__()

S

except StopIteration:

pass

• The __next__ method can use the raise StopIteration statement to
cause the loop to exit.

• Types that implement __iter__ are called iterable , and those that
implement __next__ are iterators.

• The builtin functions iter(x) and next(x) are defined to call x.__iter__()
and x.__next__().

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #17 13

Problem: Reconstruct the range class

• Want Range(1, 10) to give us something that behaves like a Python
range, so that this loop prints 1–9:

for x in Range(1, 10):

print(x)

class Range:

def __init__(self, low, high):

self._low = low

self._high = high

def __iter__(self):

return RangeIter(self)

class RangeIter:

def __init__(self, limits):

self._bound = limits._high

self._next = limits._low

def __next__(self):

if self._next >= self._bound:

raise StopIteration

else:

self._next += 1

return self._next-1

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #17 14

Summary

• Exceptions are a way of returning information from a function “out
of band,” and allowing programmers to clearly separate error han-
dling from normal cases.

• In effect, specifying possible exceptions is therefore part of the
interface.

• Usually, the specification is implicit: one assumes that violation of a
precondition might cause an exception.

• When a particular exception indicates something that might nor-
mally arise (e.g., bad user input), it will often be mentioned explicitly
in the documentation of a function.

• Finally, raise and try may be used purely as normal control struc-
tures. By convention, the exceptions used in this case don’t end in
“Error.”

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #17 15

Back To Rationals

• Before, we implemented rational numbers as functions. The “stan-
dard” way is to use a class.

• There are a few interesting problems along the way, at least if you
want to make something that meets our natural expectations.

• Python has defined a whole bunch of library classes to capture dif-
ferent kinds of number (see numbers and fractions), but we’re going
to build our own here.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #17 16

Some Basics

• We’d like rational numbers, with the usual arithmetic.

• Furthermore, we’d like to integrate rationals with other numeric
types, especially int and float.

• So, let’s start with the constructor:

class rational:

def __init__(self, numer=0, denom=1):

if type(numer) is not int or type(denom) is not int:

raise TypeError("numerator or denominator not int")

if denom == 0:

raise ZeroDivisionError("denominator is 0")

d = gcd(numer,denom)

self._numer, self._denom = numer // d, denom // d

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #17 17

Arithmetic

• Would be nice to use normal syntax, such as a+b for rationals.

• But we know how to do that from early lectures:

def __add__(self, y):

return rational(self._numer * y._denom + self._denom * y._numer,

self._denom * y._denom)

• What do we do if y is an int?

• One solution: Coercion:

def __add__(self, y):

y = rational._coerceToRational(y)

return rational(self._numer * y._denom + self._denom * y._numer,

self._denom * y._denom)

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #17 18

Coercion

• In programming languages, coercion refers to conversions between
types or representations that preserve abstract values.

@staticmethod # Why is this appropriate?

def _coerceToRational(y):

if type(y) is rational:

return y

else:

return ?

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #17 19

Type Dispatching

• But now what about 3 + rational(1,2)? Ints don’t know about ratio-
nals.

• This is a general problem with object-oriented languages. I call it
“worship of the first parameter.” It’s the type of the first parame-
ter (or that left of the dot) that controls what method gets called.

• Others use the phrase “the expression problem,” because it arises
in the context of arithmetic-expression-like things.

• There are various ways that languages have dealt with this.

• The brute-force solution is to introduce multimethods as a language
feature (functions chosen on the basic of all parameters’ types.)

• Or one can build something like this explicitly:

_add_dispatch_table = { (rational, int): _addri,

(int, rational): _addir, ...}

def __add__(self, y):

_add_dispatch_table[(type(self), type(y))](self, y)

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #17 20

A Python Approach

• The dispatch-table requires a lot of cooperation among types.

• Python uses a different approach that allows extensibility without
having to change existing numeric types.

• The expression x+y first tries x.__add__(y).

• If that throws the exception NotImplementedError, it next tries
y.__radd__(x).

• The __add__ functions for standard numeric types observe this,
and throw NotImplementedError if they can’t handle their right
operands.

• So, in rational:

def __radd__(self, y):

return rational._coerceToRational(y).__add__(x)

• And now:

>>> 3 + rational(1,2)

7/2

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #17 21

Syntax for Accessors

• Our previous implementation of rational numbers had functions for
accessing the numerator and denominator, which now might look like
this:

def numer(self):

"""My numerator in lowest terms."""

return self._numer

def denom(self):

"""My denominator in lowest terms."""

return self._denom

• It would be more convenient to be able to write simply x.numer and
x.denom, but so far, the only way we know to allow this has problems:

– The attributes are assignable, which we don’t want if rationals
are to be immutable.

– We are forced to implement them as instance variables; the im-
plementation has no opportunity to do any calculations to produce
the values.

• That is, the syntax exposes too much about the implementation.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #17 22

Properties

• To help class implementors control syntax, Python provides an egre-
giously general mechanism known as descriptors.

• An attribute of a class that is set to a descriptor object behaves
differently from usual when selected.

• Descriptors, in their full details, are wonders to behold, so we’ll
stick with simple uses.

• If we define

def numer0(self): return self._numer

numer = property(numer0) # numer is now a descriptor

Then fetching a value x.numer (i.e., without parentheses) is trans-
lated to x.numer0().

• Can’t assign to it, any more than you can assign to any function call.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #17 23

Properties (contd.)

• The usual shorthand for writing this is to use property as a decora-
tor:

@property

def numer(self): return self._numer

where the ‘@’ syntax is defined to be equivalent to

def numer(self): return self._numer

numer = property(numer) # Redefinition.

• Actually, the builtin property function is even more general. As an
example:

class RestrictedInt:

"""If R is RestrictedInt(L, U), then assign R.x = V first checks

that L <= V <= U and then causes R.x to be V."""

def __init__(self, low, high):

self._low, self._high, self._x = low, high, low

def _getx(self): return self._x

def _setx(self, val):

assert self._low <= val <= self._high

self._x = val

x = property(_getx, _setx)

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #17 24

	Lecture #17: Abstraction Support: Exceptions, Operators, Properties
	Failed preconditions
	Programmer Errors
	Outside Events
	Possible Repsonses
	Exceptions
	Communicating the Reason
	Handlers
	Retrieving the Exception
	Cleaning Up and Reraising
	Finally Clauses
	Standard Exceptions
	Example: Implementing Iterators
	Problem: Reconstruct the range class
	Summary
	Back To Rationals
	Some Basics
	Arithmetic
	Coercion
	Type Dispatching
	A Python Approach
	Syntax for Accessors
	Properties
	Properties (contd.)

