Lecture #19: Complexity and Orders of Growth, contd.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 1



The Notation

e Suppose that f is a one-parameter function on real numbers.
e O(f): functions that eventually grow no faster than f:

- g € O(f) means that |g(x)| < C, - |f(z)| forall x > M,
- where C, and M, are constants, generally different for each g.

o ()(f): functions that eventually grow at least as fast as f:

- g € Q(f) means that f € O(g),
- so that |f(z)| < C¢lg(x)| for all x > My, and so

~lgl@)| = & |f (@)
e O(f): functions that eventually grow as g grows:

-O(f) =0(f)NQ(f), so that
- g € O(f) means that Cif|f(:z;)\ < |g(z)] < C,-|f(z)| for all suffi-
ciently large x.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 2



The Notation (IT)

e So O(f), Q2(f), and O(f) are sets of functions.

o If I'i(x) and Es(z) are two expressions involving x, we usually ab-
breviate \x : El(l') & O()\ZE’ ) EQ(.I'» as jUST El(I') c O(EQ(I')) For
example, n +1 € O(n?).

e T write f € O(g) where others write f = O(g), because the latter
doesn't make sense.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 3



Illustration

e Here, f € O(g) (p = 2, see blue line), even though f(z) > g(x).
Likewise, f € Q2(g) (p = 1, see red line), and therefore f € O(g).

e That is, f(x) is eventually (for x > M = 1) no more than proportional
to g(x) and no less than proportional to g(z).

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 4



Illustration, contd.

e Here, f' € Q(g) (p = 0.5), even though g(z) > f'(x) everywhere.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 b5



Other Uses of the Notation

e You may have seen O(-) notation in math, where we say things like

(0
2

>+ O(z?), for 0 <z < a.

f(z) € f(0) + f(0)x +

e Adding or multiplying sets of functions produces sets of functions.
The expression to the right of € above means "the set of all func-
tions g such that

g(z) = f(0) + f(0)z +
where h(z) € O(z3)."

z° + h(x)

(0
2

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 6



Example: Linear Search

e Consider the following search function:

def near(L, x, delta):
""WTrue 1ff X differs from some member of sequence L by no
more than DELTA."""
for y in L:
if abs(x-y) <= delta:
return True
return False

e There's a lot here we don't know:

- How long is sequence L?

- Where in L is x (if it is)?

- What kind of numbers are in L and how long do they take to com-
pare?

- How long do abs and subtract take?

- How long does it take to create an iterator for L and how long
does its __next__operation take?

e So what can we meaningfully say about complexity of near?

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 7



What to Measure?

e If we want general answers, we have to infroduce some "strategic
vagueness.”
e Instead of looking at times, we can consider number of “operations.”
Which?
e The total time consists of
1. Some fixed overhead to start the function and begin the loop.

2. Per-iteration costs: subtraction, abs, __next__, <=

3. Some cost to end the loop.
4. Some cost to return.

e So we can collect total operations into one "fixed-cost operation”
(items 1, 3, 4), plus M| "loop operations” (item 2), where M} is the
number of items in L up to and including the y that come within delta
of x (or the length of L if no match).

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 8



What Does an "Operation” Cost?

e But these "operations” are of different kinds and complexities, so
what do we really know?

e Assuming that each operation represents some range of possible
minimum and maximum values (constants), we can say that

min_fixed _cost + M (L) x min_loop_cost
<

Chear(L)
<

max_fixed _cost + M (L) x max_loop_cost

where Cl...(L) is the cost of near on list L, and M(L) is the number
of items near must look at.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 9



Best/Worst Cases

e We can simplify by not trying to give results for particular inputs,
but instead giving summary results for all inputs of the same “size.”

e Here, "size" depends on the problem: could be magnitude, length (of
list), cardinality (of set), etc.

e Since we don't consider specific inputs, we have to be less precise.

e Typically, the figure of interest is the worst case over all inputs of
the same size.

e Since M (L) <len(L), Cpear(L) <len(L) x max loop_cost.

e So if we let C.(N) mean "worst-case cost of near over all lists of
size N," we can conclude that

Cwe(IN) € O(N)

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 10



Best of the Worst

e But in addition, it's also clear that C.(N) € Q(N).
e So we can say, most concisely, Cy.(N) € O(N).

e Generally, when a worst-case time is not O(:), it indicates either
that

- We don't know (haven't proved) what the worst case really is, just
put limits on it, or

* Most often happens when we talk about the worst-case for a
problem: “what's the worst case for the best possible algo-
rithm?"

- We know what the worst-case time is, but it's not an easy formula,
so we settle for approximations that are easier to deal with.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 11



Example: Nested Loop

e Last time, we saw the worst-case C4(NV) of the nested loop

for i, x in enumerate(L):
for j, y in enumerate(L, i+1): # Starts at i+l
if x == y: return True

is O(N?) (where N is the length of L).

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 12



Example: A Tricky Nested Loop

e What can we say about C;,(IV), the worst-case cost of this function

(assume pred counts as one constant-time operation):

def is_unduplicated(L, pred):

"""True iff the first x in L such that pred(x) is not
a duplicate. Also true if there is no x with pred(x)."""

i1=20
while i < len(L):
x = L[i]
1 +=1
if pred(x):
while i < len(L):
if x == L[i]:
return False
i +=1

return True

°?

Last modified: Tue Mar 18 16:17:51 2014

CS61A: Lecture #19 13



Example: A Tricky Nested Loop

e What can we say about C;,(N), the worst-case cost of this function
(assume pred counts as one constant-time operation):
def is_unduplicated(L, pred):

"""True iff the first x in L such that pred(x) is not
a duplicate. Also true if there is no x with pred(x)."""

i=0
while i < len(L):
x = L[i]
i+=1
if pred(x):
while i < len(L):
if x == L[i]:
return False
i +=1

return True

e ? In this case, despite the nested loop, we read each element of L
at most once. So Ciy(N) € O(N).

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 13



Some Useful Properties

In the following, K, k, K;, and k; are constants, and N > 0.
o O(KyN + K;) = O(N)
e O(N* + N 1) = O(NF)

 O([f(N)] + [g(N)]) = ©(max([f(N)], [g(N)]))

e O(log, N) = O(log, N)

e O(f(N) +g(N)) # O(max(f(N), g(N)))

o O(NM) C O(KY), if ks > 1.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 14



Some Useful Properties

In the following, K, k, K;, and k; are constants, and N > 0.
e O(KyN + K;) =0O(N)
e O(N* + N 1) = O(NF)
> |[NF| < |[NF+ N1 < 2NF for N > 1.

 O([f(N)] + [g(N)]) = ©(max([f(N)], [g(N)]))

e O(log, N) = O(log, N)

e O(f(N) +g(N)) # O(max(f(N), g(N)))

o O(NM) C O(KY), if ks > 1.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 14



Some Useful Properties

In the following, K, k, K;, and k; are constants, and N > 0.
e O(KyN + K;) =0O(N)
e O(N* + N 1) = O(NF)
> |[NF| < |[NF+ N1 < 2NF for N > 1.
 O(If(N)] +[g(N)]) = O(max(|f(N)], |g(N)]))
> max(| ()], [g(N)]) < [F(N)]+ (V)] < 2max(| fF(N)], |g(N)]).
e O(log, N) = O(log, N)

® O(f(N) +g(N)) # O(max(f(N), g(N)))

o O(NM) C O(KY), if ko > 1.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 14



Some Useful Properties

In the following, K, k, K;, and k; are constants, and N > 0.
e O(KyN + K;) =0O(N)
e O(N* + N 1) = O(NF)
> |[NF| < |[NF+ N1 < 2NF for N > 1.
 O(If(N)] +[g(N)]) = O(max(|f(N)], |g(N)]))
> max(| ()], [g(N)]) < [F(N)]+ (V)] < 2max(| fF(N)], |g(N)]).
e O(log, N) = O(log, N)

> log, N = log, b - log, N. (As a result, we usually use log, N = lg N
for all logarithms.)

e O(f(N) +g(N)) # O(max(f(N), g(N)))

o O(NM) C O(KY), if ks > 1.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 14



Some Useful Properties

In the following, K, k, K;, and k; are constants, and N > 0.
e O(KyN + K;) =0O(N)
e O(N* + N 1) = O(NF)
> |[NF| < |[NF+ N1 < 2NF for N > 1.
 O(If(N)] +[g(N)]) = O(max(|f(N)], |g(N)]))
> max(| ()], [g(N)]) < [F(N)]+ (V)] < 2max(| fF(N)], |g(N)]).
e O(log, N) = O(log, N)

> log, N = log, b - log, N. (As a result, we usually use log, N = lg N
for all logarithms.)

e O(f(N)+g(N)) # O(max(f(N),g(N)))
> Consider f(N) = —g(N).

o O(NM) C O(KY), if ks > 1.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 14



Some Useful Properties

In the following, K, k, K;, and k; are constants, and N > 0.
e O(KyN + K;) =0O(N)
e O(N* + N 1) = O(NF)
> |[NF| < |[NF+ N1 < 2NF for N > 1.
 O(If(N)] +[g(N)]) = O(max(|f(N)], |g(N)]))
> max(| ()], [g(N)]) < [F(N)]+ (V)] < 2max(| fF(N)], |g(N)]).
e O(log, N) = O(log, N)

> log, N = log, b - log, N. (As a result, we usually use log, N = lg N
for all logarithms.)

e O(f(N)+g(N)) # O(max(f(N),g(N)))
> Consider f(N) = —g(N).

e O(N*) Cc O(E), if ko > 1.
> lg NM = ki lg N, lgky’ = (lgko) N, and kylg N < - k- N for N > 0.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 14



Fast Growth

e Here's a bad way to see if a sequence appears (consecutively) in
another sequence:

def is_substring(sub, seq):
"""True iff SUB[O], SUB[1], ... appear consecutively in sequence SEQ."""
if len(sub) == 0 or sub == seq:
return True
elif len(sub) > len(seq):
return False
else:
return is_substring(sub, seql[l:]) or is_substring(sub, seql:-1])

e Suppose we count the number of times is_substring is called.
e Then time depends only on D=len(seq)-len(sub).

e Define Ci4(D) = worst-case time to compute is_substring.

e Looking at cases: D < (0 and D > 0:

1 if D <0

Cis(D> - 20is<D — 1)+ 1, otherwise.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 15



Fast Growth (II)

e To solve:
1 if D <0

Cig(D) = 2C;¢(D —1) + 1, otherwise.

e Expand repeatedly:

Cig(D) = 2Cis(D — 1) + 1
= 2(2Ci4(D —2)+1)+1
= 222(...(DO)+ )+ +...+1)+1)+1
= 222(... 1+ +)+...+ 1)+ 1) +1
= 2P oty 1
2D+1_1

c O(2")

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 16



Slow Growth

e A perhaps-familiar technique:

def binary_search(L, x):

"""Return True i1ff X occurs 1n sorted list L."""
low, high = 0, len(L)
while low < high:
m = (low + high) // 2
if x < L[m]: high = m
if x > Llm]: low = m+1
else: return True
return False

e The value of high-low is halved on each iteration, starting from N,
the length of L, so counting loop iterations in the worst case:

0, if Vv <0;
Chs(V) = 1+ Cpg(N/2), otherwise.
CbS(N> =1+ CbS(N/Q) =141 —|—CbS(N/4) = ... @<lgN>

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 17



Some Intuition on Meaning of Growth

e How big a problem can you solve in a given fime?

e In the following table, left column shows time in microseconds to
solve a given problem as a function of problem size N (assuming
perfect scaling and that problem size 1 takes 1usec).

e Entries show the size of problem that can be solved in a second,
hour, month (31 days), and century, for various relationships be-
tween time required and problem size.

e N = problem size

Time (usec) for

Max N Possible in

problem size N 1 second 1 hour 1 month 1 century
lo N 1()300000 101000000000 10310" 109-10"
N 108 3.6 - 10° 2.7-10% 3.2-100
Nlg N 63000 1.3-108 7.4 .10 6.9 - 103
N? 1000 60000 1.6 - 109 5.6 - 107
N3 100 1500 14000 150000
2N 20 32 41 51

Last modified: Tue Mar 18 16:17:51 2014

CS61A: Lecture #19 18



	Lecture #19: Complexity and Orders of Growth, contd.
	The Notation
	The Notation (II)
	Illustration
	Illustration, contd.
	Other Uses of the Notation
	Example: Linear Search
	What to Measure?
	What Does an ``Operation'' Cost?
	Best/Worst Cases
	Best of the Worst
	Example: Nested Loop
	Example: A Tricky Nested Loop
	Some Useful Properties
	Fast Growth
	Fast Growth (II)
	Slow Growth
	Some Intuition on Meaning of Growth

