Lecture \#19: Complexity and Orders of Growth, contd.

The Notation (II)

- So $O(f), \Omega(f)$, and $\Theta(f)$ are sets of functions.
- If $E_{1}(x)$ and $E_{2}(x)$ are two expressions involving x, we usually abbreviate $\lambda x: E_{1}(x) \in O\left(\lambda x: E_{2}(x)\right)$ as just $E_{1}(x) \in O\left(E_{2}(x)\right)$. For example, $n+1 \in O\left(n^{2}\right)$.
- I write $f \in O(g)$ where others write $f=O(g)$, because the latter doesn't make sense.

Illustration

- Here, $f \in O(g)(p=2$, see blue line), even though $f(x)>g(x)$. Likewise, $f \in \Omega(g)$ ($p=1$, see red line), and therefore $f \in \Theta(g)$.
- That is, $f(x)$ is eventually (for $x>M=1$) no more than proportional to $g(x)$ and no less than proportional to $g(x)$.

Illustration, contd.

- Here, $f^{\prime} \in \Omega(g)(p=0.5)$, even though $g(x)>f^{\prime}(x)$ everywhere.

The Notation

- Suppose that f is a one-parameter function on real numbers.
- $O(f)$: functions that eventually grow no faster than f :
- $g \in O(f)$ means that $|g(x)| \leq C_{g} \cdot|f(x)|$ for all $x \geq M_{g}$
- where C_{g} and M_{g} are constants, generally different for each g.
- $\Omega(f)$: functions that eventually grow at least as fast as f :
- $g \in \Omega(f)$ means that $f \in O(g)$,
- so that $|f(x)| \leq C_{f}|g(x)|$ for all $x>M_{f}$, and so
$-|g(x)| \geq \frac{1}{C_{f}}|f(x)|$.
- $\Theta(f)$: functions that eventually grow as g grows:
- $\Theta(f)=O(f) \cap \Omega(f)$, so that
- $g \in \Theta(f)$ means that $\frac{1}{C_{f}}|f(x)| \leq|g(x)| \leq C_{g} \cdot|f(x)|$ for all sufficiently large x.

Other Uses of the Notation

- You may have seen $O(\cdot)$ notation in math, where we say things like

$$
f(x) \in f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+O\left(x^{3}\right), \text { for } 0 \leq x<a
$$

- Adding or multiplying sets of functions produces sets of functions. The expression to the right of \in above means "the set of all functions g such that

$$
g(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+h(x)
$$

where $h(x) \in O\left(x^{3}\right) . "$

Example: Linear Search

- Consider the following search function:

```
def near(L, x, delta):
    """True iff X differs from some member of sequence L by no
    more than DELTA."""
    for y in L:
        if abs(x-y) <= delta:
            return True
    return False
```

- There's a lot here we don't know:
- How long is sequence L ?
- Where in L is \times (if it is)?
- What kind of numbers are in L and how long do they take to compare?
- How long do abs and subtract take?
- How long does it take to create an iterator for L and how long does its __next_- operation take?
- So what can we meaningfully say about complexity of near?

What to Measure?

- If we want general answers, we have to introduce some "strategic vagueness."
- Instead of looking at times, we can consider number of "operations." Which?
- The total time consists of

1. Some fixed overhead to start the function and begin the loop.
2. Per-iteration costs: subtraction, abs, __next_-, <=
3. Some cost to end the loop.
4. Some cost to return

- So we can collect total operations into one "fixed-cost operation" (items 1, 3, 4), plus M_{L} "loop operations" (item 2), where M_{L} is the number of items in L up to and including the y that come within delta of x (or the length of L if no match).

What Does an "Operation" Cost?

- But these "operations" are of different kinds and complexities, so what do we really know?
- Assuming that each operation represents some range of possible minimum and maximum values (constants), we can say that
min_fixed_cost $+M(L) \times$ min_loop_cost

$$
\begin{aligned}
& \leq \\
& \leq C_{\text {near }}(L) \\
& \leq
\end{aligned}
$$

$$
\text { max_fixed_cost }+M(L) \times \text { max_loop_cost }
$$

where $C_{\text {near }}(L)$ is the cost of near on list L , and $M(L)$ is the number of items near must look at.

Best/Worst Cases

- We can simplify by not trying to give results for particular inputs, but instead giving summary results for all inputs of the same "size."
- Here, "size" depends on the problem: could be magnitude, length (of list), cardinality (of set), etc.
- Since we don't consider specific inputs, we have to be less precise.
- Typically, the figure of interest is the worst case over all inputs of the same size.
- Since $M(L) \leq \operatorname{len}(L)$, $C_{\text {near }}(L) \leq \operatorname{len}(L) \times$ max_loop_cost.
- So if we let $C_{\mathrm{wc}}(N)$ mean "worst-case cost of near over all lists of size N," we can conclude that

$$
C_{\mathrm{wc}}(N) \in O(N)
$$

Best of the Worst

- But in addition, it's also clear that $C_{\mathrm{wc}}(N) \in \Omega(N)$.
- So we can say, most concisely, $C_{\mathrm{wc}}(N) \in \Theta(N)$
- Generally, when a worst-case time is not $\Theta(\cdot)$, it indicates either that
- We don't know (haven't proved) what the worst case really is, just put limits on it, or
* Most often happens when we talk about the worst-case for a problem: "what's the worst case for the best possible algorithm?"
- We know what the worst-case time is, but it's not an easy formula so we settle for approximations that are easier to deal with.

Example: Nested Loop

- Last time, we saw the worst-case $C_{a d}(N)$ of the nested loop
for i, x in enumerate(L)
for j, y in enumerate(L, i+1): \# Starts at i+1
if $\mathrm{x}=\mathrm{y}$: return True
is $\Theta\left(N^{2}\right)$ (where N is the length of L).
- What can we say about $C_{\mathrm{iu}}(N)$, the worst-case cost of this function (assume pred counts as one constant-time operation):

```
def is_unduplicated(L, pred):
    """True iff the first x in L such that pred(x) is not
    a duplicate. Also true if there is no x with pred(x)."""
    i = 0
    while i < len(L):
        x = L[i]
            i += 1
            if pred(x):
                while i < len(L):
                if x == L[i]:
                    return False
                i += 1
    return True
```

-? In this case, despite the nested loop, we read each element of L at most once. So $C_{\mathrm{iu}}(N) \in \Theta(N)$.

Some Useful Properties

In the following, K, k, K_{i}, and k_{i} are constants, and $N \geq 0$.

- $\Theta\left(K_{0} N+K_{1}\right)=\Theta(N)$
- $\Theta\left(N^{k}+N^{k-1}\right)=\Theta\left(N^{k}\right)$
$\triangleright\left|N^{k}\right| \leq\left|N^{k}+N^{k-1}\right| \leq 2 N^{k}$ for $N>1$.
- $\Theta(|f(N)|+|g(N)|)=\Theta(\max (|f(N)|,|g(N)|))$
$\triangleright \max (|f(N)|,|g(N)|) \leq|f(N)|+|g(N)| \leq 2 \max (|f(N)|,|g(N)|)$.
- $\Theta\left(\log _{a} N\right)=\Theta\left(\log _{b} N\right)$
$\triangleright \log _{a} N=\log _{a} b \cdot \log _{b} N$. (As a result, we usually use $\log _{2} N=\lg N$ for all logarithms.)
- $\Theta(f(N)+g(N)) \neq \Theta(\max (f(N), g(N)))$
\triangleright Consider $f(N)=-g(N)$.
- $O\left(N^{k_{1}}\right) \subset O\left(k_{2}^{N}\right)$, if $k_{2}>1$.
$\triangleright \lg N^{k_{1}}=k_{1} \lg N, \lg k_{2}^{N}=\left(\lg k_{2}\right) N$, and $k_{1} \lg N<\frac{k_{1}}{k_{2}} \cdot k_{2} \cdot N$ for $N>0$.

Fast Growth

- Here's a bad way to see if a sequence appears (consecutively) in another sequence:
def is_substring(sub, seq):
"""True iff SUB[0], SUB[1] , ... appear consecutively in sequence SEQ."""
if $\operatorname{len}($ sub $)==0$ or sub $==$ seq:
return True
elif len(sub) > len(seq) return False
else:
return is_substring(sub, seq[1:]) or is_substring(sub, seq[:-1])
- Suppose we count the number of times is_substring is called.
- Then time depends only on $D=\operatorname{len}(s e q)-l e n(s u b)$.
- Define $C_{\text {is }}(D)=$ worst-case time to compute is_substring.
- Looking at cases: $D \leq 0$ and $D>0$:

$$
C_{\mathbf{i s}}(D)= \begin{cases}1, & \text { if } D \leq 0 \\ 2 C_{\mathbf{i s}}(D-1)+1, & \text { otherwise }\end{cases}
$$

Fast Growth (II)

- To solve:

$$
C_{\mathbf{i s}}(D)= \begin{cases}1, & \text { if } D \leq 0 \\ 2 C_{\mathbf{i s}}(D-1)+1, & \text { otherwise } .\end{cases}
$$

- Expand repeatedly:

$$
\begin{aligned}
C_{\text {is }}(D) & =2 C_{\mathbf{i s}}(D-1)+1 \\
& =2\left(2 C_{\mathbf{i s}}(D-2)+1\right)+1 \\
& =2(2(2(\ldots(D(0)+1)+1)+\ldots+1)+1)+1 \\
& =2(2(2(\ldots(1+1)+1)+\ldots+1)+1)+1 \\
& =2^{D}+2^{D-1}+\ldots+1 \\
& =2^{D+1}-1 \\
& \in O\left(2^{D}\right)
\end{aligned}
$$

Slow Growth

- A perhaps-familiar technique:
def binary_search(L, x):
"""Return True iff X occurs in sorted list L."""
low, high $=0$, len(L)
while low < high:
$\mathrm{m}=$ (low + high) // 2
if $\mathrm{x}<\mathrm{L}[\mathrm{m}]:$ high $=\mathrm{m}$
if $x>L[m]:$ low $=m+1$
else: return True
return False
- The value of high-low is halved on each iteration, starting from N, the length of L, so counting loop iterations in the worst case:

$$
C_{\mathrm{b} \boldsymbol{s}}(N)=\left\{\begin{array}{l}
0, \\
1+C_{\mathrm{b} \boldsymbol{s}}(N / 2), \text { otherwise. }
\end{array}\right.
$$

- So

$$
C_{\mathrm{b} \mathbf{s}}(N)=1+C_{\mathrm{b}}(N / 2)=1+1+C_{\mathrm{b}}(N / 4)=\cdots \in \Theta(\lg N)
$$

Last modified: Tue Mar 18 16:17:51 2014
CS61A: Lecture \#19 17

Some Intuition on Meaning of Growth

- How big a problem can you solve in a given time?
- In the following table, left column shows time in microseconds to solve a given problem as a function of problem size N (assuming perfect scaling and that problem size 1 takes $1 \mu \mathrm{sec}$).
- Entries show the size of problem that can be solved in a second, hour, month (31 days), and century, for various relationships between time required and problem size.
- $N=$ problem size

Time $(\mu \mathbf{s e c})$ for	Max N Possible in			
problem size N	1 second	1 hour	1 month	1 century
$\lg N$	10^{300000}	$10^{1000000000}$	$10^{8 \cdot 10^{11}}$	$10^{9 \cdot 10^{14}}$
N	10^{6}	$3.6 \cdot 10^{9}$	$2.7 \cdot 10^{12}$	$3.2 \cdot 10^{15}$
$N \lg N$	63000	$1.3 \cdot 10^{8}$	$7.4 \cdot 10^{10}$	$6.9 \cdot 10^{13}$
N^{2}	1000	60000	$1.6 \cdot 10^{6}$	$5.6 \cdot 10^{7}$
N^{3}	100	1500	14000	150000
2^{N}	20	32	41	51

Last modified: Tue Mar 18 16:17:51 2014

