
Lecture #19: Complexity and Orders of Growth, contd.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 1

The Notation

• Suppose that f is a one-parameter function on real numbers.

• O(f): functions that eventually grow no faster than f :

– g ∈ O(f) means that |g(x)| ≤ Cg · |f(x)| for all x ≥ Mg

– where Cg and Mg are constants, generally different for each g.

• Ω(f): functions that eventually grow at least as fast as f :

– g ∈ Ω(f) means that f ∈ O(g),

– so that |f(x)| ≤ Cf |g(x)| for all x > Mf , and so

– |g(x)| ≥ 1

Cf
|f(x)|.

• Θ(f): functions that eventually grow as g grows:

– Θ(f) = O(f) ∩ Ω(f), so that

– g ∈ Θ(f) means that 1

Cf
|f(x)| ≤ |g(x)| ≤ Cg · |f(x)| for all suffi-

ciently large x.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 2

The Notation (II)

• So O(f), Ω(f), and Θ(f) are sets of functions.

• If E1(x) and E2(x) are two expressions involving x, we usually ab-
breviate λx : E1(x) ∈ O(λx : E2(x)) as just E1(x) ∈ O(E2(x)). For
example, n + 1 ∈ O(n2).

• I write f ∈ O(g) where others write f = O(g), because the latter
doesn’t make sense.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 3

Illustration

2g(x)

g(x)

f(x)

M = 1

• Here, f ∈ O(g) (p = 2, see blue line), even though f(x) > g(x).
Likewise, f ∈ Ω(g) (p = 1, see red line), and therefore f ∈ Θ(g).

• That is, f(x) is eventually (for x > M = 1) no more than proportional
to g(x) and no less than proportional to g(x).

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 4

Illustration, contd.

g(x)

0.5g(x)

f ′(x)

M = 1

• Here, f ′ ∈ Ω(g) (p = 0.5), even though g(x) > f ′(x) everywhere.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 5

Other Uses of the Notation

• You may have seen O(·) notation in math, where we say things like

f(x) ∈ f(0) + f ′(0)x +
f ′′(0)

2
x2 + O(x3), for 0 ≤ x < a.

• Adding or multiplying sets of functions produces sets of functions.
The expression to the right of ∈ above means “the set of all func-
tions g such that

g(x) = f(0) + f ′(0)x +
f ′′(0)

2
x2 + h(x)

where h(x) ∈ O(x3).”

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 6

Example: Linear Search

• Consider the following search function:

def near(L, x, delta):

"""True iff X differs from some member of sequence L by no

more than DELTA."""

for y in L:

if abs(x-y) <= delta:

return True

return False

• There’s a lot here we don’t know:

– How long is sequence L?

– Where in L is x (if it is)?

– What kind of numbers are in L and how long do they take to com-
pare?

– How long do abs and subtract take?

– How long does it take to create an iterator for L and how long
does its next operation take?

• So what can we meaningfully say about complexity of near?

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 7

What to Measure?

• If we want general answers, we have to introduce some “strategic
vagueness.”

• Instead of looking at times, we can consider number of “operations.”
Which?

• The total time consists of

1. Some fixed overhead to start the function and begin the loop.

2. Per-iteration costs: subtraction, abs, next , <=

3. Some cost to end the loop.

4. Some cost to return.

• So we can collect total operations into one “fixed-cost operation”
(items 1, 3, 4), plus ML “loop operations” (item 2), where ML is the
number of items in L up to and including the y that come within delta
of x (or the length of L if no match).

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 8

What Does an “Operation” Cost?

• But these “operations” are of different kinds and complexities, so
what do we really know?

• Assuming that each operation represents some range of possible
minimum and maximum values (constants), we can say that

min fixed cost + M(L) × min loop cost

≤

Cnear(L)

≤

max fixed cost + M(L) × max loop cost

where Cnear(L) is the cost of near on list L, and M(L) is the number
of items near must look at.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 9

Best/Worst Cases

• We can simplify by not trying to give results for particular inputs,
but instead giving summary results for all inputs of the same “size.”

• Here, “size” depends on the problem: could be magnitude, length (of
list), cardinality (of set), etc.

• Since we don’t consider specific inputs, we have to be less precise.

• Typically, the figure of interest is the worst case over all inputs of
the same size.

• Since M(L) ≤ len(L), Cnear(L) ≤ len(L) × max loop cost.

• So if we let Cwc(N) mean “worst-case cost of near over all lists of
size N ,” we can conclude that

Cwc(N) ∈ O(N)

.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 10

Best of the Worst

• But in addition, it’s also clear that Cwc(N) ∈ Ω(N).

• So we can say, most concisely, Cwc(N) ∈ Θ(N).

• Generally, when a worst-case time is not Θ(·), it indicates either
that

– We don’t know (haven’t proved) what the worst case really is, just
put limits on it, or

∗ Most often happens when we talk about the worst-case for a
problem: “what’s the worst case for the best possible algo-
rithm?”

– We know what the worst-case time is, but it’s not an easy formula,
so we settle for approximations that are easier to deal with.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 11

Example: Nested Loop

• Last time, we saw the worst-case Cad(N) of the nested loop

for i, x in enumerate(L):

for j, y in enumerate(L, i+1): # Starts at i+1

if x == y: return True

is Θ(N 2) (where N is the length of L).

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 12

Example: A Tricky Nested Loop

• What can we say about Ciu(N), the worst-case cost of this function
(assume pred counts as one constant-time operation):

def is_unduplicated(L, pred):

"""True iff the first x in L such that pred(x) is not

a duplicate. Also true if there is no x with pred(x)."""

i = 0

while i < len(L):

x = L[i]

i += 1

if pred(x):

while i < len(L):

if x == L[i]:

return False

i += 1

return True

• ? In this case, despite the nested loop, we read each element of L
at most once. So Ciu(N) ∈ Θ(N).

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 13

Some Useful Properties

In the following, K, k, Ki, and ki are constants, and N ≥ 0.

• Θ(K0N + K1) = Θ(N)

• Θ(Nk + Nk−1) = Θ(Nk)

� |Nk| ≤ |Nk + Nk−1| ≤ 2Nk for N > 1.

• Θ(|f(N)| + |g(N)|) = Θ(max(|f(N)|, |g(N)|))

� max(|f(N)|, |g(N)|) ≤ |f(N)| + |g(N)| ≤ 2 max(|f(N)|, |g(N)|).

• Θ(loga N) = Θ(logb N)

� loga N = loga b · logb N . (As a result, we usually use log2 N = lg N
for all logarithms.)

• Θ(f(N) + g(N)) 6= Θ(max(f(N), g(N)))

� Consider f(N) = −g(N).

• O(Nk1) ⊂ O(kN
2), if k2 > 1.

� lg Nk1 = k1 lg N , lg kN
2 = (lg k2)N , and k1 lg N < k1

k2
·k2 ·N for N > 0.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 14

Fast Growth

• Here’s a bad way to see if a sequence appears (consecutively) in
another sequence:

def is_substring(sub, seq):

"""True iff SUB[0], SUB[1], ... appear consecutively in sequence SEQ."""

if len(sub) == 0 or sub == seq:

return True

elif len(sub) > len(seq):

return False

else:

return is_substring(sub, seq[1:]) or is_substring(sub, seq[:-1])

• Suppose we count the number of times is_substring is called.

• Then time depends only on D=len(seq)-len(sub).

• Define Cis(D) = worst-case time to compute is_substring.

• Looking at cases: D ≤ 0 and D > 0:

Cis(D) =















1, if D ≤ 0
2Cis(D − 1) + 1, otherwise.

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 15

Fast Growth (II)

• To solve:

Cis(D) =















1, if D ≤ 0
2Cis(D − 1) + 1, otherwise.

• Expand repeatedly:

Cis(D) = 2Cis(D − 1) + 1

= 2(2Cis(D − 2) + 1) + 1

= 2(2(2(. . . (D(0) + 1) + 1) + . . . + 1) + 1) + 1

= 2(2(2(. . . (1 + 1) + 1) + . . . + 1) + 1) + 1

= 2D + 2D−1 + . . . + 1

= 2D+1 − 1

∈ O(2D)

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 16

Slow Growth

• A perhaps-familiar technique:

def binary_search(L, x):

"""Return True iff X occurs in sorted list L."""

low, high = 0, len(L)

while low < high:

m = (low + high) // 2

if x < L[m]: high = m

if x > L[m]: low = m+1

else: return True

return False

• The value of high-low is halved on each iteration, starting from N ,
the length of L, so counting loop iterations in the worst case:

Cbs(N) =















0, if N ≤ 0;
1 + Cbs(N/2), otherwise.

• So

Cbs(N) = 1 + Cbs(N/2) = 1 + 1 + Cbs(N/4) = · · · ∈ Θ(lg N)

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 17

Some Intuition on Meaning of Growth

• How big a problem can you solve in a given time?

• In the following table, left column shows time in microseconds to
solve a given problem as a function of problem size N (assuming
perfect scaling and that problem size 1 takes 1µsec).

• Entries show the size of problem that can be solved in a second,
hour, month (31 days), and century, for various relationships be-
tween time required and problem size.

• N = problem size

Time (µsec) for Max N Possible in
problem size N 1 second 1 hour 1 month 1 century

lg N 10300000 101000000000 108·10
11

109·10
14

N 106 3.6 · 109 2.7 · 1012 3.2 · 1015

N lg N 63000 1.3 · 108 7.4 · 1010 6.9 · 1013

N 2 1000 60000 1.6 · 106 5.6 · 107

N 3 100 1500 14000 150000
2N 20 32 41 51

Last modified: Tue Mar 18 16:17:51 2014 CS61A: Lecture #19 18

	Lecture #19: Complexity and Orders of Growth, contd.
	The Notation
	The Notation (II)
	Illustration
	Illustration, contd.
	Other Uses of the Notation
	Example: Linear Search
	What to Measure?
	What Does an ``Operation'' Cost?
	Best/Worst Cases
	Best of the Worst
	Example: Nested Loop
	Example: A Tricky Nested Loop
	Some Useful Properties
	Fast Growth
	Fast Growth (II)
	Slow Growth
	Some Intuition on Meaning of Growth

