
Lecture #20: Tree Recursions, Memoization, Tree
Structures

Last modified: Tue Mar 18 16:17:50 2014 CS61A: Lecture #20 1

Example: Escape from a Maze

• Consider a rectangular maze consisting of an array of squares some
of which are occupied by large blocks of concrete:

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

• Given the size of the maze and locations of the blocks, prisoner, and
exit, how does the prisoner escape?

Last modified: Tue Mar 18 16:17:50 2014 CS61A: Lecture #20 2

Maze Program (Incorrect)

def solve_maze(row0, col0, maze):

"""Assume that MAZE is a rectangular 2D array (list of lists) where

maze[r][c] is true iff there is a concrete block occupying

column c of row r. ROW0 and COL0 are the initial row and column

of the prisoner. Returns true iff there is a path of empty

squares that are horizontally or vertically adjacent to each other

starting with (ROW0, COL0) and ending outside the maze."""

if row0 not in range(len(maze)) or col0 not in range(len(maze[row])):

return True

elif maze[row0][col0]: # In wall

return False

else:

return solve_maze(row0+1, col0, maze) or solve_maze(row0-1, col0, maze) \

or solve_maze(row0, col0+1, maze) or solve_maze(row0, col0-1, maze) \

What’s wrong?

Last modified: Tue Mar 18 16:17:50 2014 CS61A: Lecture #20 3

Maze Program (Corrected)

To fix the problem, remember where we’ve been:

def solve_maze(row0, col0, maze):

"""Assume that MAZE is a rectangular 2D array (list of lists) where

maze[r][c] is true iff there is a concrete block occupying

column c of row r. ROW0 and COL0 are the initial row and column

of the prisoner. Returns true iff there is a path of empty

squares that are horizontally or vertically adjacent to each other

starting with (ROW0, COL0) and ending outside the maze."""

visited = set() # Set of visited cells

cols, rows = range(len(maze[0])), range(len(maze))

def escapep(r, c):

"""True iff is a path of empty, unvisited cells from (R, C) out of maze."""

if r not in rows or c not in cols:

return True

elif maze[r][c] or (r, c) in visited:

return False

else:

visited.add((r,c))

return escapep(r+1, c) or escapep(r-1, c) \

or escapep(r, c+1) or escapep(r, c-1)

return escapep(row0, col0)

Last modified: Tue Mar 18 16:17:50 2014 CS61A: Lecture #20 4

Example: Making Change

def count_change(amount, denoms = (50, 25, 10, 5, 1)):

"""The number of ways to change AMOUNT cents given the

denominations of coins and bills in DENOMS.

>>> # 9 cents = 1 nickel and 4 pennies, or 9 pennies

>>> count_change(9)

2

>>> # 12 cents = 1 dime and 2 pennies, 2 nickels and 2 pennies,

>>> # 1 nickel and 7 pennies, or 12 pennies

>>> count_change(12)

4

"""

if amount == 0: return 1

elif len(denoms) == 0: return 0

elif amount >= denoms[0]:

return count_change(amount-denoms[0], denoms) \

+ count_change(amount, denoms[1:])

else:

return count_change(amount, denoms[1:])

Last modified: Tue Mar 18 16:17:50 2014 CS61A: Lecture #20 5

Avoiding Redundant Computation

• In the (tree-recursive) maze example, a naive search could take us
in circles, resulting in infinite time.

• Hence the visited set in the escapep function.

• This set is intended to catch redundant computation, in which re-
processing certain arguments cannot produce anything new.

• We can apply this idea to cases of finite but redundant computation.

• For example, in count_change, we often revisit the same subprob-
lem:

– E.g., Consider making change for 87 cents.

– When choose to use one half-dollar piece, we have the same sub-
problem as when we choose to use no half-dollars and two quar-
ters.

• Saw an approach in Lecture #16: memoization.

Last modified: Tue Mar 18 16:17:50 2014 CS61A: Lecture #20 6

Memoizing

• Idea is to keep around a table (“memo table”) of previously computed
values.

• Consult the table before using the full computation.

• Example: count_change:

def count_change(amount, denoms = (50, 25, 10, 5, 1)):

memo_table = {} # Indexed by pairs (row, column)

Local definition hides outer one so we can cut-and-paste

from the unmemoized solution.

def count_change(amount, denoms):

if (amount, denoms) not in memo_table:

memo_table[amount,denoms] \

= full_count_change(amount, denoms)

return memo_table[amount,denoms]

def full_count_change(amount, denoms):

unmemoized original solution goes here verbatim

return count_change(amount,denoms)

• Question: how could we test for infinite recursion?

Last modified: Tue Mar 18 16:17:50 2014 CS61A: Lecture #20 7

Optimizing Memoization

• Used a dictionary to memoize count_change, which is highly general,
but can be relatively slow.

• More often, we use arrays indexed by integers (lists in Python), but
the idea is the same.

• For example, in the count_change program, we can index by amount
and by the portion of denoms that we use, which is always a slice
that runs to the end.

def count_change(amount, denoms = (50, 25, 10, 5, 1)):

memo_table[amt][k] contains the value computed for

count_change(amt, denoms[k:])

memo_table = [[-1] * (len(denoms)+1) for i in range(amount+1)]

def count_change(amount, denoms):

if memo_table[amount][len(denoms)] == -1:

memo_table[amount][len(denoms)] \

= full_count_change(amount, denoms)

return memo_table[amount][len(denoms)]

...

Last modified: Tue Mar 18 16:17:50 2014 CS61A: Lecture #20 8

Order of Calls

• Going one step further, we can analyze the order in which our pro-
gram ends up filling in the table.

• So consider adding some tracing to our memoized count_change pro-
gram:

memo_table = {}

def count_change(amount, denoms):

... full_count_change(amount, denoms) ...

return memo_table[amount,denoms]

@trace

def full_count_change(amount, denoms):

if amount == 0: return 1

elif not denoms: return 0

elif amount >= denoms[0]:

return count_change(amount, denoms[1:]) \

+ count_change(amount-denoms[0], denoms)

else:

return count_change(amount, denoms[1:])

return count_change(amount,denoms)

Last modified: Tue Mar 18 16:17:50 2014 CS61A: Lecture #20 9

Result of Tracing

• Consider count_change(57) (returns only):

full_count_change(57, ()) -> 0

full_count_change(56, ()) -> 0

...

full_count_change(1, ()) -> 0

full_count_change(0, (1,)) -> 1

full_count_change(1, (1,)) -> 1

...

full_count_change(57, (1,)) -> 1

full_count_change(2, (5, 1)) -> 1

full_count_change(7, (5, 1)) -> 2

...

full_count_change(57, (5, 1)) -> 12

full_count_change(7, (10, 5, 1)) -> 2

full_count_change(17, (10, 5, 1)) -> 6

...

full_count_change(32, (10, 5, 1)) -> 16

full_count_change(7, (25, 10, 5, 1)) -> 2

full_count_change(32, (25, 10, 5, 1)) -> 18

full_count_change(57, (25, 10, 5, 1)) -> 60

full_count_change(7, (50, 25, 10, 5, 1)) -> 2

full_count_change(57, (50, 25, 10, 5, 1)) -> 62
Last modified: Tue Mar 18 16:17:50 2014 CS61A: Lecture #20 10

Dynamic Programming

• Now rewrite count_change to make the order of calls explicit, so
that we needn’t check to see if a value is memoized.

• Technique is called dynamic programming (for some reason).

• We start with the base cases, and work backwards.

def count_change(amount, denoms = (50, 25, 10, 5, 1)):

memo_table = [[-1] * (len(denoms)+1) for i in range(amount+1)]

def count_change(amount, denoms):

return memo_table[amount][len(denoms)]

def full_count_change(amount, denoms):

How often is this called?

... # (calls count_change for recursive results)

for a in range(0, amount+1):

memo_table[a][0] = full_count_change(a, ())

for k in range(1, len(denoms) + 1):

for a in range(1, amount+1):

memo_table[a][k] = full_count_change(a, denoms[-k:])

return count_change(amount, denoms)

Last modified: Tue Mar 18 16:17:50 2014 CS61A: Lecture #20 11

New Topic: Tree-Structured Data

• 1 Linear-recursive and tail-recursive functions make a single recur-
sive call in the function body. Tree-recursive functions can make
more.

• Linear recursive data structures (think rlists) have single embedded
recursive references to data of the same type, and usually corre-
spond to linear- or tail-recursive programs.

• To model some things, we need mulitple recursive references in ob-
jects.

• In the absence of circularity (paths from an object eventually lead-
ing back to it), such objects form data structures called trees:

– The objects themselves are called nodes or vertices.

– Tree objects that have no (non-null) pointers to other tree ob-
jects are called leaves.

– Those that do have such pointers are called inner nodes, and the
objects they point to are children (or subtrees or (uncommonly)
branches).

– A collection of disjoint trees is called a forest.

Last modified: Tue Mar 18 16:17:50 2014 CS61A: Lecture #20 12

Example: Expressions

• An expression (in Python or other languages) typically has a recur-
sive structure. It is either

– A literal (like 5) or symbol (like x)—a leaf—or

– A compound expression consisting of an operator and zero or
more operands, each of which is itself an expression.

• For example, the expression x + (y+2)*(z+10) can be thought of as a
tree (what happened to the parentheses?):

+

x
*

+

y 2

+

z 10

Last modified: Tue Mar 18 16:17:50 2014 CS61A: Lecture #20 13

Expressions as Tuples or Lists

• We can represent the abstract structure of the last slide with
Python objects we’ve already seen:

+ x

*

+ z 10+ y 2

("+", "x", ("*", ("+", "y", "2"), ("+", "z", "10")))

Last modified: Tue Mar 18 16:17:50 2014 CS61A: Lecture #20 14

Class Representation

• . . . or we can introduce a Python class:

class ExprTree:

def __init__(self, operator):

self.__operator = operator

@property

def operator(self):

return self.__operator

@property

def left(self):

raise NotImplementedError

@property

def right(self):

raise NotImplementedError

class Leaf(ExprTree):

pass

class Inner(ExprTree):

def __init__(self, operator,

left, right):

ExprTree.__init__(self, operator)

self._left = left;

self._right = right

@property

def left(self):

return self._left

@property

def right(self):

return self._right

Inner("+", Leaf("x"),

Inner("*", Inner("+", Leaf("y"), Leaf("2")),

Inner("+", Leaf("z"), Leaf("10"))))

Last modified: Tue Mar 18 16:17:50 2014 CS61A: Lecture #20 15

A General Tree Type

• Trees don’t quite lend themselves to being captured with standard
syntax like tuples or lists, because they get accessed in various
ways, with slightly varying interfaces.

• To start with, we’ll use this type, which has no empty trees:

class Tree:

"""A Tree consists of a label and a sequence

of 0 or more Trees, called its children."""

def __init__(self, label, *children):

"""A Tree with given label and children.

For convenience, if children[k] is not a Tree,

it is converted into a leaf whose operator is

children[k]."""

self._label = label;

self._children = \

[c if type(c) is Tree else Tree(c)

for c in children]

Last modified: Tue Mar 18 16:17:50 2014 CS61A: Lecture #20 16

A General Tree Type: Accessors

class Tree:

@property

def is_leaf(self):

return self.arity == 0

@property

def label(self):

return self._label

@property

def arity(self):

"""The number of my children."""

return len(self._children)

def __iter__(self):

"""An iterator over my children."""

return iter(self._children)

def __getitem__(self, k):

"""My kth child."""

return self._children[k]

Last modified: Tue Mar 18 16:17:50 2014 CS61A: Lecture #20 17

A Simple Recursion

• Since trees are recursively defined, recursion generally figures in
algorithms on them.

• Example: number of leaf nodes.

def leaf_count(T):

"""Number of leaf nodes in the Tree T."""

if T.is_leaf:

return 1

else:

s = 0

for child in T:

s += leaf_count(child)

return s

Can you put the else clause in one line instead?

return functools.reduce(operator.add, map(leaf_count, T), 0)

• How long does this take (for a tree with N leaves)?

Last modified: Tue Mar 18 16:17:50 2014 CS61A: Lecture #20 18

	Lecture #20: Tree Recursions, Memoization, Tree Structures
	Example: Escape from a Maze
	Maze Program (Incorrect)
	Maze Program (Corrected)
	Example: Making Change
	Avoiding Redundant Computation
	Memoizing
	Optimizing Memoization
	Order of Calls
	Result of Tracing
	Dynamic Programming
	New Topic: Tree-Structured Data
	Example: Expressions
	Expressions as Tuples or Lists
	Class Representation
	A General Tree Type
	A General Tree Type: Accessors
	A Simple Recursion

