
Lecture #21: Search Trees, Sets

Last modified: Tue Mar 18 18:15:49 2014 CS61A: Lecture #21 1



General Tree Class (From Last Lecture)

class Tree:

"""A Tree consists of a label and a sequence

of 0 or more Trees, called its children."""

def __init__(self, label, *children):

"""A Tree with given label and children."""

def __str__(self): # Used by print(.) and str(.)

def __repr__(self): # Used by the interpreter

@property

def is_leaf(self): return self.arity == 0

@property

def label(self): ...

@property

def arity(self):

"""The number of my children."""

def __iter__(self):

"""An iterator over my children."""

def __getitem__(self, k):

"""My kth child."""

Last modified: Tue Mar 18 18:15:49 2014 CS61A: Lecture #21 2



A Search

def tree_contains(T, x):

"""True iff x is a label in T."""

• This particular definition of trees lends itself to Noetherian induc-
tion with no explicit base case.

def tree_contains(T, x):

"""True iff x is a label in T."""

return

Last modified: Tue Mar 18 18:15:49 2014 CS61A: Lecture #21 3



A Search

def tree_contains(T, x):

"""True iff x is a label in T."""

if x == T.label:

return True

else:

for c in T:

if tree_contains(c, x):

return True

return False

• This particular definition of trees lends itself to Noetherian induc-
tion with no explicit base case.

def tree_contains(T, x):

"""True iff x is a label in T."""

return

Last modified: Tue Mar 18 18:15:49 2014 CS61A: Lecture #21 3



A Search

def tree_contains(T, x):

"""True iff x is a label in T."""

if x == T.label:

return True

else:

for c in T:

if tree_contains(c, x):

return True

return False

• This particular definition of trees lends itself to Noetherian induc-
tion with no explicit base case.

def tree_contains(T, x):

"""True iff x is a label in T."""

return x == T.label or \

any(map(lambda C: tree_contains(C, x),

T))

Last modified: Tue Mar 18 18:15:49 2014 CS61A: Lecture #21 3



Printing Trees

• The __str__ method lends itself to recursion:

class Tree:

...

def __str__(self):

"""My printed string representation (leaves print only

their labels).

>>> str(Tree(3, Tree(2), Tree(3), Tree(4, Tree(5), Tree(6))))

’(3 2 3 (4 5 6))’

"""

3

2 3 4

5 6

Last modified: Tue Mar 18 18:15:49 2014 CS61A: Lecture #21 4



Printing Trees

• The __str__ method lends itself to recursion:

class Tree:

...

def __str__(self):

"""My printed string representation (leaves print only

their labels).

>>> str(Tree(3, Tree(2), Tree(3), Tree(4, Tree(5), Tree(6))))

’(3 2 3 (4 5 6))’

"""

if self.is_leaf:

return str(self.label)

return "(" + str(self.label) + " " + \

" ".join(map(str, self)) + ")"

def __repr__(self):

"""My string representation for the interpreter, etc.

>>> Tree(3, Tree(2), Tree(3), Tree(4, Tree(5), Tree(6)))

Tree:(3 2 3 (4 5 6))"""

return "Tree:" + str(self)

3

2 3 4

5 6

Last modified: Tue Mar 18 18:15:49 2014 CS61A: Lecture #21 4



Tree to List

• Another example with no explicit base cases:

from functools import reduce

from operator import add

def tree_to_list_preorder(T):

"""The list of all labels in T, listing the labels

of trees before those of their children, and listing their

children left to right (preorder).

>>> B = Tree(4, Tree(5), Tree(6, Tree(7), Tree(5, Tree(4))))

>>> B

Tree:(4 5 (6 7 (5 4)))

>>> tree_to_list_preorder(B)

(4 5 6 7 5 4)

"""

4

5 6

7 5

4

Last modified: Tue Mar 18 18:15:49 2014 CS61A: Lecture #21 5



Tree to List

• Another example with no explicit base cases:

from functools import reduce

from operator import add

def tree_to_list_preorder(T):

"""The list of all labels in T, listing the labels

of trees before those of their children, and listing their

children left to right (preorder).

>>> B = Tree(4, Tree(5), Tree(6, Tree(7), Tree(5, Tree(4))))

>>> B

Tree:(4 5 (6 7 (5 4)))

>>> tree_to_list_preorder(B)

(4 5 6 7 5 4)

"""

return sum(map(tree_to_list_preorder, T), (T.label,))

4

5 6

7 5

4

Last modified: Tue Mar 18 18:15:49 2014 CS61A: Lecture #21 5



Search Trees

• The book talks about search trees as implementations of sets of
values.

• Here, the purpose of the tree is to divide data into smaller parts.

• In a binary search tree, each node is either empty or has two chil-
dren that are binary search trees such that all labels in the first
(left) child are less than the node’s label and all labels in the second
(right) child are greater.

10

5

2 7

15

20

17

Last modified: Tue Mar 18 18:15:49 2014 CS61A: Lecture #21 6



Search Tree Class

• To work on search trees, it is useful to have a few more methods on
trees:

class BinTree(Tree):

@property

def is_empty(self):

"""This tree contains no labels or children."""

@property

def left(self):

return self[0]

@property

def right(self):

return self[1]

"""The empty tree"""

empty_tree = ...

Last modified: Tue Mar 18 18:15:49 2014 CS61A: Lecture #21 7



Tree Search Program

def tree_find(T, x):

"""True iff x is a label in set T, represented as a search tree.

That is, T

(a) Is an empty tree if T.is_empty(), or

(b) Has two children, T.left and T.right, both search trees,

and all labels in T.left are less than T.label,

and all labels in T.right are greater than T.label."""

• Since the values of the only recursive calls are immediately re-
turned, this program is tail-recursive.

Last modified: Tue Mar 18 18:15:49 2014 CS61A: Lecture #21 8



Tree Search Program

def tree_find(T, x):

"""True iff x is a label in set T, represented as a search tree.

That is, T

(a) Is an empty tree if T.is_empty(), or

(b) Has two children, T.left and T.right, both search trees,

and all labels in T.left are less than T.label,

and all labels in T.right are greater than T.label."""

if T.is_empty:

return False

if x == T.label:

return True

if x < T.label:

return tree_find(T.left, x)

else:

return tree_find(T.right, x)

• Since the values of the only recursive calls are immediately re-
turned, this program is tail-recursive.

Last modified: Tue Mar 18 18:15:49 2014 CS61A: Lecture #21 8



Iterative Tree Search Program

def tree_find(T, x):

"""True iff x is a label in set T, represented as a search tree.

That is, T

(a) Is an empty tree if T.is_empty(), or

(b) Has two children, T.left and T.right, both search trees,

and all labels in T.left are less than T.label,

and all labels in T.right are greater than T.label."""

while :

if x == T.label:

return True

elif x < T.label:

else:

return False

Last modified: Tue Mar 18 18:15:49 2014 CS61A: Lecture #21 9



Iterative Tree Search Program

def tree_find(T, x):

"""True iff x is a label in set T, represented as a search tree.

That is, T

(a) Is an empty tree if T.is_empty(), or

(b) Has two children, T.left and T.right, both search trees,

and all labels in T.left are less than T.label,

and all labels in T.right are greater than T.label."""

while not T.is_empty:

if x == T.label:

return True

elif x < T.label:

else:

return False

Last modified: Tue Mar 18 18:15:49 2014 CS61A: Lecture #21 9



Iterative Tree Search Program

def tree_find(T, x):

"""True iff x is a label in set T, represented as a search tree.

That is, T

(a) Is an empty tree if T.is_empty(), or

(b) Has two children, T.left and T.right, both search trees,

and all labels in T.left are less than T.label,

and all labels in T.right are greater than T.label."""

while not T.is_empty:

if x == T.label:

return True

elif x < T.label:

T = T.left

else:

T = T.right

return False

Last modified: Tue Mar 18 18:15:49 2014 CS61A: Lecture #21 9



Timing

• How long does the tree_find program (search binary tree) take in
the worst case,

1. As a function of H, the height of the tree? (The height is the
maximum distance from the root to a leaf.)

2. As a function of N , the number of keys in the tree?

3. As a function of H if the tree is as shallow as possible for the
amount of data?

4. As a function of N if the tree is as shallow as possible for the
amount of data?

7

3

2 5

19

11 29

H

2

3

5

7

11

19

29

H

Last modified: Tue Mar 18 18:15:49 2014 CS61A: Lecture #21 10



Timing

• How long does the tree_find program (search binary tree) take in
the worst case,

1. As a function of H, the height of the tree? (The height is the
maximum distance from the root to a leaf.) A: Θ(H)

2. As a function of N , the number of keys in the tree?

3. As a function of H if the tree is as shallow as possible for the
amount of data?

4. As a function of N if the tree is as shallow as possible for the
amount of data?

7

3

2 5

19

11 29

H

2

3

5

7

11

19

29

H

Last modified: Tue Mar 18 18:15:49 2014 CS61A: Lecture #21 10



Timing

• How long does the tree_find program (search binary tree) take in
the worst case,

1. As a function of H, the height of the tree? (The height is the
maximum distance from the root to a leaf.) A: Θ(H)

2. As a function of N , the number of keys in the tree? A: Θ(N)

3. As a function of H if the tree is as shallow as possible for the
amount of data?

4. As a function of N if the tree is as shallow as possible for the
amount of data?

7

3

2 5

19

11 29

H

2

3

5

7

11

19

29

H

Last modified: Tue Mar 18 18:15:49 2014 CS61A: Lecture #21 10



Timing

• How long does the tree_find program (search binary tree) take in
the worst case,

1. As a function of H, the height of the tree? (The height is the
maximum distance from the root to a leaf.) A: Θ(H)

2. As a function of N , the number of keys in the tree? A: Θ(N)

3. As a function of H if the tree is as shallow as possible for the
amount of data? A: Θ(H)

4. As a function of N if the tree is as shallow as possible for the
amount of data?

7

3

2 5

19

11 29

H

2

3

5

7

11

19

29

H

Last modified: Tue Mar 18 18:15:49 2014 CS61A: Lecture #21 10



Timing

• How long does the tree_find program (search binary tree) take in
the worst case,

1. As a function of H, the height of the tree? (The height is the
maximum distance from the root to a leaf.) A: Θ(H)

2. As a function of N , the number of keys in the tree? A: Θ(N)

3. As a function of H if the tree is as shallow as possible for the
amount of data? A: Θ(H)

4. As a function of N if the tree is as shallow as possible for the
amount of data? A: Θ(lg N)

7

3

2 5

19

11 29

H

2

3

5

7

11

19

29

H

Last modified: Tue Mar 18 18:15:49 2014 CS61A: Lecture #21 10



Timing

• How long does the tree_find program (search binary tree) take in
the worst case,

1. As a function of H, the height of the tree? (The height is the
maximum distance from the root to a leaf.) A: Θ(H)

2. As a function of N , the number of keys in the tree? A: Θ(N)

3. As a function of H if the tree is as shallow as possible for the
amount of data? A: Θ(H)

4. As a function of N if the tree is as shallow as possible for the
amount of data? A: Θ(lg N)

7

3

2 5

19

11 29

H

2

3

5

7

11

19

29

H

Last modified: Tue Mar 18 18:15:49 2014 CS61A: Lecture #21 10


	Lecture #21: Search Trees, Sets
	General Tree Class (From Last Lecture)
	A Search
	Printing Trees
	Tree to List
	Search Trees
	Search Tree Class
	Tree Search Program
	Iterative Tree Search Program
	Timing

