
Lecture #22: Search Trees and Sets, Part II

Last modified: Tue Mar 18 19:58:23 2014 CS61A: Lecture #22 1

Adding (Adjoining) a Value

• Must add values to a search tree in the right place: the place
tree_find would try to find them.

• For example, if we add 17 to the search tree on left, we get the one
on the right:

7

3

2 5

19

11 29

7

3

2 5

19

11

13

29

• Simplest always to add at the bottom (leaves) of the tree.

Last modified: Tue Mar 18 19:58:23 2014 CS61A: Lecture #22 2

Non-destructive Add

• Broadly, there are two styles for dealing with structures that change
over time:

– Non-destructive operations preserve the prior state of the struc-
ture and create a new one.

– Destructive operations, as a side effect, may modify the previous
structure, losing information about its previous contents.

def tree_add(T, x):

"""Assuming T is a binary search tree, a new binary search tree

that contains all previous values in T, plus X

(if not previously present)."""

if T.is_empty:

return BinTree(x)

elif x == T.label:

return T

elif x < T.label:

return BinTree(T.label, tree_add(T.left, x), T.right)

else:

return BinTree(T.label, T.left, tree_add(T.right, x))

Last modified: Tue Mar 18 19:58:23 2014 CS61A: Lecture #22 3

Destructive Operations

• Destructive operations can be appropriate in circumstances where

– We want speed: avoid the work of creating new structures.

– The same data structure is referenced from multiple places, and
we want all of them to be updated.

• First requires that we add capabilities to our class:

class BinTree(Tree):

def set_left(self, newval):

"""Assuming NEWVAL is a BinTree, sets SELF.left to NEWVAL."""

...

def set_right(self, newval):

"""Assuming NEWVAL is a BinTree, sets SELF.right to NEWVAL."""

...

Last modified: Tue Mar 18 19:58:23 2014 CS61A: Lecture #22 4

Destructive Add

• Destructive add looks very much like the non-destructive variety.

def dtree_add(T, x):

"""Assuming T is a binary search tree, a binary search tree

that contains all previous values in T, plus X

(if not previously present). May destroy the initial contents

of T."""

if T.is_empty:

return BinTree(x)

elif x == T.label:

return T

elif x < T.label:

T.set_left(dtree_add(T.left, x))

return T

else:

T.set_right(dtree_add(T.right, x))

return T

Last modified: Tue Mar 18 19:58:23 2014 CS61A: Lecture #22 5

Binary Search Trees as Sets

• For data that has a well-behaved ordering relation (a total ordering),
BinTree provides a possible implementation of Python’s set type.

• x in S corresponds to tree_find(S, x)

• S.union({x}) or S + {x} correspond to tree_add(S, x)

• S.add(x) or S += {x} correspond to dtree_add(S, x)

• Actually, Python uses hash tables for its sets, which you’ll see in
CS61B (plug).

Last modified: Tue Mar 18 19:58:23 2014 CS61A: Lecture #22 6

Problem: Make a Balanced Tree

• I have a sorted list, and would like to turn it into the best (shallow-
est) binary search tree that contains the same values.

• Hint: Getting a shallow tree requires making the two child subtrees
of each node have equal numbers of values (±1).

def list_to_tree(L):

"""Assuming L is a sorted list, a (nearly) balanced

search tree containing exactly the values in L."""

if len(L) == 0:

return Tree.empty_tree

else:

root_index = len(L) // 2

return BinTree(L[root_index],

list_to_tree(L[:root_index]),

list_to_tree(L[root_index+1:]))

Last modified: Tue Mar 18 19:58:23 2014 CS61A: Lecture #22 7

Problem: Iterating Through All Values

• Iterating over a tree gives us only the children, at present.

• Could we get all the nodes or labels in a tree,

• . . . and for binary search trees, could we get them in sorted order?

• All it takes is a method that returns an appropriate iterator or it-
erable, and we can write, e.g.,

for val in T.preorder_values():

...

• How would we do that?

class Tree:

...

def preorder_values(self):

return ?

• Here, ? could be a list of all values in the tree, which we’ve done
already. What else?

Last modified: Tue Mar 18 19:58:23 2014 CS61A: Lecture #22 8

Creating an Iterator (Review)

• As we’ve seen (Lecture 17), an iterator is an object that implements
a method __next__ on itelf.

• When called, it should either return a value or raise StopException.

• An iterable is an object that either

– Implements a method __iter__(self) that returns an iterator, or

– Implements a method __getitem__(self, k) that returns item
number k (or raises an exception).

• Many methods and constructs take iterables, including for clauses,
map, reduce, zip, and many others.

• When given an iterable, these create a new iterator from it (using
__iter__), which allows one pass over the data.

Last modified: Tue Mar 18 19:58:23 2014 CS61A: Lecture #22 9

Iterating Over a Binary Tree: Strategy

• To create an iterator on a tree, consider this reimplementation of
tree_to_list_preorder from Lecture 21 (for binary trees):

def tree_to_list_preorder(T):

"""The list of all labels in T, listing the labels

of trees before those of their children, and listing their

children left to right (preorder)."""

if T.is_empty:

return ()

else:

return (T.label,) + tree_to_list_preorder(T.left) \

+ tree_to_list_preorder(T.right)

• Suppose that we wanted to return just the first item (T’s label).
What work would be left to do?

• Clearly, returning (iterating through) all the values in the left child
and then on the right.

• To get the next value (after T’s label), we’ll need to start iterating
through the left child, leaving its children to be processed.

• When the next tree in the queue is empty, discard it.
Last modified: Tue Mar 18 19:58:23 2014 CS61A: Lecture #22 10

Iterating Over a Binary Tree: Data Structure

• So, to iterate over a tree, let’s have our iterator consist of a list of
subtrees that still need iterating over.

class BinTree(Tree):

...

def __iter__(self): return tree_iter(self)

class tree_iter:

def __init__(self, the_tree):

self._work_queue = [the_tree]

...

def __next__(self): ?

Standard hack: by making iterators implement __iter__, they

are themselves iterable, so you can use them in

for statements, etc.

def __iter__(self): return self

Last modified: Tue Mar 18 19:58:23 2014 CS61A: Lecture #22 11

Iterating Over a Binary Tree: Example

• Suppose that we create iter = T.__iter__() where T is
10

5

2 6

15

• Initially, iter._work_queue would contain just the tree rooted at the
node labeled 10 (let’s just say ‘Tree 10’ from now on).

• After the first call to iter.__next__(), which returns 10, iter._work_queue
would contain [Tree 5, Tree 15]

• After the second call to iter.__next__(), which returns 5, iter._work_queue
would contain [Tree 2, Tree 6, Tree 15]

• Then [Empty, Empty, Tree 6, Tree 15]

Last modified: Tue Mar 18 19:58:23 2014 CS61A: Lecture #22 12

	Lecture #22: Search Trees and Sets, Part II
	Adding (Adjoining) a Value
	Non-destructive Add
	Destructive Operations
	Destructive Add
	Binary Search Trees as Sets
	Problem: Make a Balanced Tree
	Problem: Iterating Through All Values
	Creating an Iterator (Review)
	Iterating Over a Binary Tree: Strategy
	Iterating Over a Binary Tree: Data Structure
	Iterating Over a Binary Tree: Example

