
Lecture #23: Iterators on Trees

Last modified: Thu Mar 20 01:52:13 2014 CS61A: Lecture #23 1

Slight Correction from Last Time

• In the last lecture, I defined

class BinTree(Tree):

def __iter__(self): return tree_iter(self)

• However, there is already an __iter__ method on BinTree, inherited
from Tree, which iterates over the tree’s children.

• So instead, let’s define (and document)

class BinTree(Tree):

def preorder_values(self):

"""My labels, delivered in preorder (node label first, then labels

of left child in preorder, then labels of right child in preorder.

>>> T = BinTree(10, BinTree(5, BinTree(2), BinTree(6)), BinTree(15))

>>> for v in T.preorder_values(): print(v, end=" ")

10 5 2 6 15

>>> list(T.preorder_values())

[10, 5, 2, 6, 15]"""

return tree_iter(self)

• The for statement above shows why it is useful to have iterators
(like tree_iter) have an __iter__ method: it allows a for loop to
take either an iterable or an iterator.

Last modified: Thu Mar 20 01:52:13 2014 CS61A: Lecture #23 2

Iterating Over a Binary Tree: Strategy

• To create an iterator on a tree, consider this reimplementation of
tree_to_list_preorder from Lecture 21 (for binary trees):

def tree_to_list_preorder(T):

"""The list of all labels in T, listing the labels

of trees before those of their children, and listing their

children left to right (preorder)."""

if T.is_empty:

return ()

else:

return (T.label,) + tree_to_list_preorder(T.left) \

+ tree_to_list_preorder(T.right)

• Suppose that we wanted to return just the first item (T’s label).
What work would be left to do?

• Clearly, returning (iterating through) all the values in the left child
and then on the right.

• To get the next value (after T’s label), we’ll need to start iterating
through the left child, leaving its children to be processed.

• When the next tree in the queue is empty, discard it.
Last modified: Thu Mar 20 01:52:13 2014 CS61A: Lecture #23 3

Iterating Over a Binary Tree: Data Structure

• So, to iterate over a tree, let’s have our iterator consist of a list of
subtrees that still need iterating over.

class BinTree(Tree):

...

def preorder_values(self): return tree_iter(self)

class tree_iter:

def __init__(self, the_tree):

self._work_queue = [the_tree]

...

def __next__(self): ?

Have iterator implement __iter__, so that it can

be used in for statements, etc.

def __iter__(self): return self

Last modified: Thu Mar 20 01:52:13 2014 CS61A: Lecture #23 4

Iterating Over a Binary Tree: Example

• Suppose that we create iter = T.preorder_values() where T is

10

5

2 6

15

• Initially, iter._work_queue would contain just the tree rooted at the
node labeled 10 (let’s just say ‘Tree 10’ from now on).

• After the first call to iter.__next__(), which returns 10, iter._work_queue
would contain [Tree 5, Tree 15]

• After the second call to iter.__next__(), which returns 5, iter._work_queue
would contain [Tree 2, Tree 6, Tree 15]

• Then [Empty, Empty, Tree 6, Tree 15]

• Then, throw away the empty trees and process Tree 6, returning 6
and leaving its children: [Empty, Empty, Tree 15]

Last modified: Thu Mar 20 01:52:13 2014 CS61A: Lecture #23 5

Iterating Over a Binary Tree: Code

class BinTree(Tree):

...

def preorder_values(self): return tree_iter(self)

class tree_iter:

def __init__(self, the_tree):

self._work_queue = [the_tree]

def __next__(self):

while :

subtree = self._work_queue.pop(0) # Get first item

if subtree.is_empty:

else:

= subtree.left, subtree.right

return

def __iter__(self): return self

Last modified: Thu Mar 20 01:52:13 2014 CS61A: Lecture #23 6

Iterating Over a Binary Tree: Code

class BinTree(Tree):

...

def preorder_values(self): return tree_iter(self)

class tree_iter:

def __init__(self, the_tree):

self._work_queue = [the_tree]

def __next__(self):

while len(self._work_queue) > 0:

subtree = self._work_queue.pop(0) # Get first item

if subtree.is_empty:

else:

= subtree.left, subtree.right

return

def __iter__(self): return self

Last modified: Thu Mar 20 01:52:13 2014 CS61A: Lecture #23 6

Iterating Over a Binary Tree: Code

class BinTree(Tree):

...

def preorder_values(self): return tree_iter(self)

class tree_iter:

def __init__(self, the_tree):

self._work_queue = [the_tree]

def __next__(self):

while len(self._work_queue) > 0:

subtree = self._work_queue.pop(0) # Get first item

if subtree.is_empty:

pass

else:

= subtree.left, subtree.right

return

def __iter__(self): return self

Last modified: Thu Mar 20 01:52:13 2014 CS61A: Lecture #23 6

Iterating Over a Binary Tree: Code

class BinTree(Tree):

...

def preorder_values(self): return tree_iter(self)

class tree_iter:

def __init__(self, the_tree):

self._work_queue = [the_tree]

def __next__(self):

while len(self._work_queue) > 0:

subtree = self._work_queue.pop(0) # Get first item

if subtree.is_empty:

pass

else:

self._work_queue[0:0] = subtree.left, subtree.right

return

def __iter__(self): return self

Last modified: Thu Mar 20 01:52:13 2014 CS61A: Lecture #23 6

Iterating Over a Binary Tree: Code

class BinTree(Tree):

...

def preorder_values(self): return tree_iter(self)

class tree_iter:

def __init__(self, the_tree):

self._work_queue = [the_tree]

def __next__(self):

while len(self._work_queue) > 0:

subtree = self._work_queue.pop(0) # Get first item

if subtree.is_empty:

pass

else:

self._work_queue[0:0] = subtree.left, subtree.right

return subtree.label

def __iter__(self): return self

Last modified: Thu Mar 20 01:52:13 2014 CS61A: Lecture #23 6

Iterating Over a Binary Tree: Code

class BinTree(Tree):

...

def preorder_values(self): return tree_iter(self)

class tree_iter:

def __init__(self, the_tree):

self._work_queue = [the_tree]

def __next__(self):

while len(self._work_queue) > 0:

subtree = self._work_queue.pop(0) # Get first item

if subtree.is_empty:

pass

else:

self._work_queue[0:0] = subtree.left, subtree.right

return subtree.label

raise StopIteration

def __iter__(self): return self

Last modified: Thu Mar 20 01:52:13 2014 CS61A: Lecture #23 6

Small Technical Node on Speed

• Inserting and deleting from the beginning of a Python list can be
slow (when?).

• So we usually add and delete from the end (reversing the lists):

class tree_iter:

def __init__(self, the_tree):

self._work_queue = [the_tree]

def __next__(self):

while len(self._work_queue) > 0:

subtree = self._work_queue.pop()

if subtree.is_empty:

pass

else:

self._work_queue += subtree.right, subtree.left

Reversed!

return subtree.label

raise StopIteration

Last modified: Thu Mar 20 01:52:13 2014 CS61A: Lecture #23 7

Iterating Over a Binary Search Tree In Order

• The iterator we just defined iterates in preorder: first the root’s
label, then the labels of the left child in preorder, then the labels
of the right child in preorder.

• But for a binary search tree, this gives the values out of order.

• Instead, we want the labels of the left child (in order), then the
root’s label, then those of the right.

• This is known as an inorder traversal of a binary tree. For search
trees, it gives us the values in order.

• We could get this with a different iterator:

class BinTree(Tree):

...

def inorder_values(self):

"""An iterator over my labels in order.

>>> T = BinTree(10, BinTree(5, BinTree(2), BinTree(6)), BinTree(15))

>>> for v in T.inorder_values():

... print(v, end=" ")

2 5 6 10 15"""

return inorder_tree_iter(self)

Last modified: Thu Mar 20 01:52:13 2014 CS61A: Lecture #23 8

The Inorder Iterator

• To get this change, we have to put both trees and labels in the work
queue.

• Let’s simplify by assuming that we never use trees as labels (no trees
of trees).

• So for the tree we looked at previously:

10

5

2 6

15

we’d start with Tree 10 (as before), and process that by replacing
it with Tree 5, 10 (the label), and Tree 15 in the queue.

• When we get to a label in the queue, we return it.

Last modified: Thu Mar 20 01:52:13 2014 CS61A: Lecture #23 9

Using Inorder Iterators: A repr Method

• It would be nice to have a specialized way to print binary search
trees, which we can do by redefining BinTree.__repr__:

class BinTree(Tree):

...

def __repr__(self):

"""A string representing me (used by the interpreter).

>>> T = BinTree(10, BinTree(5, BinTree(2), BinTree(6)), BinTree(15))

>>> T

{2, 5, 6, 10, 15}"""

result = "{"

for v in self.inorder_values():

if result != "{":

result += ", "

result += repr(v)

return result + "}"

Can you do it in one line?

return

Last modified: Thu Mar 20 01:52:13 2014 CS61A: Lecture #23 10

Using Inorder Iterators: A repr Method

• It would be nice to have a specialized way to print binary search
trees, which we can do by redefining BinTree.__repr__:

class BinTree(Tree):

...

def __repr__(self):

"""A string representing me (used by the interpreter).

>>> T = BinTree(10, BinTree(5, BinTree(2), BinTree(6)), BinTree(15))

>>> T

{2, 5, 6, 10, 15}"""

result = "{"

for v in self.inorder_values():

if result != "{":

result += ", "

result += repr(v)

return result + "}"

Can you do it in one line?

return "{" + ’, ’.join(map(repr, self.inorder_values())) + "}"

Last modified: Thu Mar 20 01:52:13 2014 CS61A: Lecture #23 10

Intersection

• In lab, you looked at intersection between Python sets.

• Since we’re using BinTrees as sets, it makes sense to consider the
same problem here.

• One approach is brute force, for value in one set, see if it is in the
other:

def intersection(s1, s2):

"""The intersection of the values in BinTrees S1 and S2."""

result = BinTree.empty_tree

for v in s1.preorder_values():

if tree_find(s2, v):

result = dtree_add(result, v)

return result

• If our trees remain “bushy” (shallow), how long does this take, as a
function of N , the maximum of the sizes of s1 and s2?

Last modified: Thu Mar 20 01:52:13 2014 CS61A: Lecture #23 11

Intersection

• In lab, you looked at intersection between Python sets.

• Since we’re using BinTrees as sets, it makes sense to consider the
same problem here.

• One approach is brute force, for value in one set, see if it is in the
other:

def intersection(s1, s2):

"""The intersection of the values in BinTrees S1 and S2."""

result = BinTree.empty_tree

for v in s1.preorder_values():

if tree_find(s2, v):

result = dtree_add(result, v)

return result

• If our trees remain “bushy” (shallow), how long does this take, as a
function of N , the maximum of the sizes of s1 and s2? A: O(N lg N)

• That’s because there are O(N) items in s1; checking for each of
them in s2 takes O(lg N) (if bushy); we add a maximum of N values
to the result; and adding each of them also takes O(lg N).

Last modified: Thu Mar 20 01:52:13 2014 CS61A: Lecture #23 11

Using Inorder Iterators for Intersection

• We can avoid doing repeated searches by iterating through both
sets of values simultaneously.

• Can use Python’s built-in next function: next(an_iterator, default)
returns the result of calling an_iterator.__next__(), except that if
that causes an exception, next returns default instead.

• Unfortunately, there is a price: resulting tree is not bushy [why?]
def intersection(s1, s2):

it1, it2 = s1.inorder_values(), s2.inorder_values()

v1, v2 = next(it1, None), next(it2, None)

result = BinTree.empty_tree

while v1 is not None and v2 is not None:

if v1 == v2:

result = dtree_add(result, v1)

v1, v2 = next(it1, None), next(it2, None)

elif :

else:

return result

Last modified: Thu Mar 20 01:52:13 2014 CS61A: Lecture #23 12

Using Inorder Iterators for Intersection

• We can avoid doing repeated searches by iterating through both
sets of values simultaneously.

• Can use Python’s built-in next function: next(an_iterator, default)
returns the result of calling an_iterator.__next__(), except that if
that causes an exception, next returns default instead.

• Unfortunately, there is a price: resulting tree is not bushy [why?]
def intersection(s1, s2):

it1, it2 = s1.inorder_values(), s2.inorder_values()

v1, v2 = next(it1, None), next(it2, None)

result = BinTree.empty_tree

while v1 is not None and v2 is not None:

if v1 == v2:

result = dtree_add(result, v1)

v1, v2 = next(it1, None), next(it2, None)

elif v1 < v2:

else:

return result

Last modified: Thu Mar 20 01:52:13 2014 CS61A: Lecture #23 12

Using Inorder Iterators for Intersection

• We can avoid doing repeated searches by iterating through both
sets of values simultaneously.

• Can use Python’s built-in next function: next(an_iterator, default)
returns the result of calling an_iterator.__next__(), except that if
that causes an exception, next returns default instead.

• Unfortunately, there is a price: resulting tree is not bushy [why?]
def intersection(s1, s2):

it1, it2 = s1.inorder_values(), s2.inorder_values()

v1, v2 = next(it1, None), next(it2, None)

result = BinTree.empty_tree

while v1 is not None and v2 is not None:

if v1 == v2:

result = dtree_add(result, v1)

v1, v2 = next(it1, None), next(it2, None)

elif v1 < v2:

v1 = next(it1, None)

else:

v2 = next(it2, None)

return result

Last modified: Thu Mar 20 01:52:13 2014 CS61A: Lecture #23 12

	Lecture #23: Iterators on Trees
	Slight Correction from Last Time
	Iterating Over a Binary Tree: Strategy
	Iterating Over a Binary Tree: Data Structure
	Iterating Over a Binary Tree: Example
	Iterating Over a Binary Tree: Code
	Small Technical Node on Speed
	Iterating Over a Binary Search Tree In Order
	The Inorder Iterator
	Using Inorder Iterators: A __repr__ Method
	Intersection
	Using Inorder Iterators for Intersection

