
Lecture #24: Programming Languages and Programs

• A programming language is a notation for describing computations
or processes.

• These range from low-level notations, such as machine language or
simple hardware description languages, where the subject matter is
typically finite bit sequences and primitive operations on them that
correspond directly to machine instructions or gates, . . .

• . . . To high-level notations, such as Python, in which the subject mat-
ter can be objects and operations of arbitrary complexity.

• They may be general-purpose, such as Python or Java, or domain-
specific, specialized to particular purposes, such as CSS or XAML.

• Their implementations may stand alone (as for most implementations
of Python or C), or be embedded as a component of a larger system.

• The universe of implementations of these languages is layered: Python
can be implemented in C, which in turn can be implemented in assem-
bly language, which in turn is implemented in machine language, which
in turn is implemented with gates.

Last modified: Fri Mar 21 18:56:43 2014 CS61A: Lecture #26 1

Metalinguistic Abstraction

• We’ve created abstractions of actions—functions—and of things—
classes.

• Metalinguistic abstraction refers to the creation of languages—
abstracting description. Programming languages are one example.

• Programming languages are effective: they can be implemented.

• These implementations interpret utterances in that language, per-
forming the described computation or controlling the described pro-
cess.

• The interpreter may be hardware (interpreting machine-language
programs) or software (a program called an interpreter), or (in-
creasingly common) both.

• To be implemented, though, the grammar and meaning of utterances
in the programming language must be defined precisely.

Last modified: Fri Mar 21 18:56:43 2014 CS61A: Lecture #26 2

Review (from Lecture 1): What’s In A Programming
Language?

• Values: the things programs fiddle with;

• Primitive operations (on values);

• Combining mechanisms: glue operations together;

• Predefined names (the “library”);

• Definitional mechanisms: which allow one to introduce symbolic names
and (in effect) to extend the library.

Last modified: Fri Mar 21 18:56:43 2014 CS61A: Lecture #26 3

The Scheme Language

Scheme is a dialect of Lisp:

• “The only programming language that is beautiful.”
—Neal Stephenson

• “The greatest single programming language ever designed”
—Alan Kay

Last modified: Fri Mar 21 18:56:43 2014 CS61A: Lecture #26 4

Scheme Background

• Invented in the 1970s by Guy Steele (“The Great Quux”), who has
also participated in the development of Emacs, Java, and Common
Lisp.

• Designed to simplify and clean up certain irregularities in Lisp di-
alects at the time.

• Used in a fast Lisp compiler (Rabbit).

• Still maintained by a standards committee (although both Brian Har-
vey and I agree that recent versions have accumulated an unfortu-
nate layer of cruft).

Last modified: Fri Mar 21 18:56:43 2014 CS61A: Lecture #26 5

Values

• We divide Scheme data into atoms and pairs.

• The classical atoms:

– Numbers: integer, floating-point, complex, rational.

– Symbols.

– Booleans: #t, #f.

– The empty list: ().

– Procedures (functions).

• Some newer-fangled, mutable atoms:

– Vectors: Python lists.

– Strings.

– Characters: Like Python 1-element strings.

• Pairs are two-element tuples, where the elements are (recursively)
Scheme values.

Last modified: Fri Mar 21 18:56:43 2014 CS61A: Lecture #26 6

Symbols

• Lisp was originally designed to manipulate symbolic data: e.g., for-
mulae as opposed merely to numbers.

• Such data is typically recursively defined (e.g., “an expression con-
sists of an operator and subexpressions”).

• The “base cases” had to include numbers, but also variables or words.

• For this purpose, Lisp introduced the notion of a symbol:

– Essentially a constant string.

– Two symbols with the same “spelling” (string) are always the same
object.

– Confusingly, the reader (the program that reads in Scheme pro-
grams and data) converts symbols it reads into lower-case first.

• The main operation on symbols, therefore, is equality.

Last modified: Fri Mar 21 18:56:43 2014 CS61A: Lecture #26 7

Pairs and Lists

• As we’ve seen, one can build practically any data structure out of
pairs.

• The Scheme notation for the pair of values V1 and V2 is

(V1 . V2)

• In Scheme, the main use of pairs is to build lists, defined recursively
like an rlist:

– The empty list, written “()”, is a list.

– The pair consisting of a value V and a list L is a list that starts
with V , and whose tail is L.

• Lists are so prevalent that there is a standard abbreviation: You can
write (V . ()) as (V), and (. . . . (V . R)) as (. . . V . R).

• By repeated application of these rules, the typical list:
(V1 . (V2 . (. . . (Vn . ()) . . .))) becomes just (V1 V2 . . . Vn).

Last modified: Fri Mar 21 18:56:43 2014 CS61A: Lecture #26 8

Programs

• Scheme expressions programs are instances of Lisp data structures
(“Scheme is written in Scheme”).

• At the bottom, numerals, booleans, characters, and strings are ex-
pressions that stand for themselves.

• Most lists stand for function calls:

(OP E1 · · · En)

as a Scheme expression means “evaluate OP and the E1 (recursively),
and then apply the value of OP, which must be a function, to the
values of the arguments Ei.”

• A few lists, identified by their OP, are special forms, which each
have different meanings.

Last modified: Fri Mar 21 18:56:43 2014 CS61A: Lecture #26 9

Quotation

• Since programs are data, we have a problem: suppose you want your
program to create a piece of data that happens to look like a pro-
gram?

• How do we say, for example, “Set the variable x to the three-
element list (+ 1 2)” without it meaning “Set the variable x to the
value 3?”

• The “quote” special form does this: evaluating (quote E) yields E
itself as the value, without treating it like a Scheme expression to
be evaluated.

>>> (+ 1 2)

3

>>> (quote (+ 1 2))

(+ 1 2)

>>> ’(+ 1 2) ; Shorthand. Converted to (quote (+ 1 2))

(+ 1 2)

• How about

>>> (quote (1 2 ’(3 4))) ;?

Last modified: Fri Mar 21 18:56:43 2014 CS61A: Lecture #26 10

Quotation

• Since programs are data, we have a problem: suppose you want your
program to create a piece of data that happens to look like a pro-
gram?

• How do we say, for example, “Set the variable x to the three-
element list (+ 1 2)” without it meaning “Set the variable x to the
value 3?”

• The “quote” special form does this: evaluating (quote E) yields E
itself as the value, without treating it like a Scheme expression to
be evaluated.

>>> (+ 1 2)

3

>>> (quote (+ 1 2))

(+ 1 2)

>>> ’(+ 1 2) ; Shorthand. Converted to (quote (+ 1 2))

(+ 1 2)

• How about

>>> (quote (1 2 ’(3 4))) ;?

(1 2 (quote (3 4)))

Last modified: Fri Mar 21 18:56:43 2014 CS61A: Lecture #26 10

Symbols

• When evaluated as a program, a symbol acts like a variable name.

• Variables are bound in environments, just as in Python, although the
syntax differs.

• To define a new symbol, either use it as a parameter name (later),
or use the “define” special form:

(define pi 3.1415926)

(define pi**2 (* pi pi))

• This (re)defines the symbols in the current environment. The sec-
ond expression is evaluated first.

• To assign a new value to an existing binding, use the set! special
form:

(set! pi 3)

• Here, pi must be defined, and it is that definition that is changed
(not like Python).

Last modified: Fri Mar 21 18:56:43 2014 CS61A: Lecture #26 11

Function Evaluation

• Function evaluation is just like Python: same environment frames,
same rules for what it means to call a user-defined function.

• To create a new function, we use the lambda special form:

>>> ((lambda (x y) (+ (* x x) (* y y))) 3 4)

25

>>> (define fib

(lambda (n) (if (< n 2) n (+ (fib (- n 2) (- n 1))))))

>>> (fib 5)

5

• The last is so common, there’s an abbreviation:

>>> (define (fib n)

(if (< n 2) n (+ (fib (- n 2) (- n 1)))))

Last modified: Fri Mar 21 18:56:43 2014 CS61A: Lecture #26 12

Numbers

• All the usual numeric operations and comparisons:

>>> (- (quotient (* (+ 3 7 10) (- 1000 8)) 992) 17)

3

>>> (> 7 2)

#t

>>> (< 2 4 8)

#t

>>> (= 3 (+ 1 2) (- 4 1))

#t

>>> (integer? 5)

#t

>>> (integer? ’a)

#f

Last modified: Fri Mar 21 18:56:43 2014 CS61A: Lecture #26 13

Lists and Pairs

• Pairs (and therefore lists) have a basic constructor and accessors:

>>> (cons 1 2)

(1 . 2)

>>> (cons ’a (cons ’b ’()))

(1 2)

>>> (define L (a b c))

>>> (car L)

a

>>> (cdr L)

(b c)

>>> (cadr L) ; (car (cdr L))

b

>>> (cdddr L) ; (cdr (cdr (cdr L)))

()

• And one that is especially for lists:

>>> (list (+ 1 2) ’a 4)

(3 a 4)

>>> ; Why not just write ((+ 1 2) a 4)?

Last modified: Fri Mar 21 18:56:43 2014 CS61A: Lecture #26 14

Conditionals

• The basic control structures are the conditionals, which are special
forms:

>>> (define x 14)

>>> (define n 2)

>>> (if (not (zero? n)) ; Condition

... (quotient x n) ; If condition is not #f

... x) ; If condition is #f

7

>>> (and (< 2 3) (> 3 4))

#f

>>> (and (< 2 3) ’())

()

>>> (or (< 2 3) (> 3 4))

#t

>>> (or (< 3 2) ’())

()

Last modified: Fri Mar 21 18:56:43 2014 CS61A: Lecture #26 15

Traditional Conditionals

Traditional Lisp had a more elaborate special form, which Scheme in-
herited:

>>> (define x 5)

>>> (cond ((< x 1) ’small)

... ((< x 3) ’medium)

... ((< x 5) ’large)

... (else ’big))

big

Last modified: Fri Mar 21 18:56:43 2014 CS61A: Lecture #26 16

Binding Constructs: Let

• Sometimes, you’d like to introduce local variables or named con-
stants.

• The let special form does this:

>>> (define x 17)

>>> (let ((x 5)

... (y (+ x 2)))

... (+ x y))

24

• This is a derived form, equivalent to:

>>> ((lambda (x y)

(+ x y))

5 (+ x 2))

Last modified: Fri Mar 21 18:56:43 2014 CS61A: Lecture #26 17

Tail recursion

• With just the functions and special forms so far, can write anything.

• But there is one problem: how to get an arbitrary iteration that
doesn’t overflow the execution stack because recursion gets too
deep?

• Scheme requires tail-recursive functions to work like iterations.

• This means that in this program:

(define (fib n)

(define (fib1 n1 n2 n)

(if (< n 2)

n2

(fib1 n2 (+ n1 n2) (- n 1))))

(if (= n 0) 0

(fib1 0 1 n)))

• Instead of calling fib1 recursively, we replace the call on fib1 with
the recursive call.

• Result: don’t need while loops.

Last modified: Fri Mar 21 18:56:43 2014 CS61A: Lecture #26 18

Examples

• Length of a list:

(define (length L)

(if (null? L) 0 (+ 1 (length (cdr L)))))

• Tail-recursive length:

(define (length L)

(define (add-length prev L)

(if (null? L) prev (add-length (+ prev 1) (cdr L))))

(add-length 0 L))

• Scheme version of getitem :

(define (nth k L)

(if (= k 0) (car L) (nth (- k 1) (cdr L))))

Last modified: Fri Mar 21 18:56:43 2014 CS61A: Lecture #26 19

Example: Operating on Scheme

Evaluate a Scheme expression containing only numbers and binary +, -,
and *:

(define (eval E)

(if (number? E) E

(let ((left (eval (nth 1 E)))

(right (eval (nth 2 E)))

(op (nth 0 E)))

(let ((func (cond ((eq? op ’+) +)

((eq? op ’-) -)

(#t *))))

(func left right)))))

• E is an expression, represented as a Scheme value.

• If it’s a number, it “evaluates to itself.”

• Otherwise, it must have the form (op left right), where op is one of
the symbols +, - or *. We evaluate left and right, find the function
that corresponds to op, and apply it.

• Since this is Scheme we are evaluating (in Scheme), the function
associated with the symbol +, e.g., is bound to the symbol +.

Last modified: Fri Mar 21 18:56:43 2014 CS61A: Lecture #26 20

	Lecture #24: Programming Languages and Programs
	Metalinguistic Abstraction
	Review (from Lecture 1): What's In A Programming Language?
	The Scheme Language
	Scheme Background
	Values
	Symbols
	Pairs and Lists
	Programs
	Quotation
	Symbols
	Function Evaluation
	Numbers
	Lists and Pairs
	Conditionals
	Traditional Conditionals
	Binding Constructs: Let
	Tail recursion
	Examples
	Example: Operating on Scheme

