
Lecture #25: Calculator

Adminitrivia

• Extended TA office hours in labs Tuesday from 11AM.

• Exam is at 8PM on Wednesday; rooms to be assigned as happened
last time (not the same rooms: see postings and email to come).

• No lecture on Wednesday, but I’ll be in my office.

• Exam is open-book; no responsive devices.

Last modified: Mon Mar 31 15:42:15 2014 Lecture #25: Calculator 1

A Sample Language: Calculator

• Source: John Denero.

• Prefix notation expression language for basic arithmetic Python-like
syntax, with more flexible built-in functions.

calc> add(1, 2, 3, 4)

10

calc> mul()

1

calc> sub(100, mul(7, add(8, div(-12, -3))))

16.0

calc> -(100, *(7, +(8, /(-12, -3))))

16.0

Last modified: Mon Mar 31 15:42:15 2014 Lecture #25: Calculator 2

Syntax and Semantics of Calculator

Expression types:

• A call expression is an operator name followed by a comma-separated
list of operand expressions, in parentheses.

• A primitive expression is a number.

Operators:

• The add (or +) operator returns the sum of its arguments

• The sub (-) operator returns either

– the additive inverse of a single argument, or

– the sum of subsequent arguments subtracted from the first.

• The mul (*) operator returns the product of its arguments.

• The div (/) operator returns the real-valued quotient of a dividend
and divisor.

Last modified: Mon Mar 31 15:42:15 2014 Lecture #25: Calculator 3

Strategy

• Our calculator program represents expressions as trees (see Lec-
ture #20).

• It consists of a parser, which produces expression trees from in-
put text, and an evaluator, which performs the computations repre-
sented by the trees to produce values.

• You can use the term “interpreter” to refer to both, or to just the
evaluator.

"+(3, *(-(add(8, 10)), 2))" Parse

+

3 *

-

add

8 10

2

Eval-33

Last modified: Mon Mar 31 15:42:15 2014 Lecture #25: Calculator 4

Expression Trees (augmented)

To create an expression tree:

class Exp:

"""An expression"""

def __init__(self, operator_or_value, operands = None):

"""If OPERANDS is None, a primitive OPERATOR_OR_VALUE.

Otherwise, an expression with OPERATOR_OR_VALUE as its

operator and OPERANDS (a list of Exps) as its operands."""

self._opval = operator_or_value

self._operands = operands

@property

def operator(self): return self._opval

@property

def operands(self): return self._operands

@property

def is_primitive(self): return self._operands is None

@property

def value(self): return self._opval

Last modified: Mon Mar 31 15:42:15 2014 Lecture #25: Calculator 5

Expression Trees By Hand

Let’s define the methods repr and str to produce reasonable
representations of expression trees:

>>> Exp(’add’, [Exp(1), Exp(2)]) # Intepreter uses .__repr__

Exp(’add’, [Exp(1), Exp(2)])

>>> str(Exp(’add’, [Exp(1), Exp(2)])) # str uses .__str__

’add(1, 2)’

>>> Exp(’add’, [Exp(1), Exp(’*’, [Exp(2), Exp(3), Exp(4)])])

Exp(’add’, [Exp(1), Exp(’*’, [Exp(2), Exp(3), Exp(4)])])

>>> str(Exp(’add’, [Exp(1), Exp(’*’, [Exp(2), Exp(3), Exp(4)])]))

’add(1, *(2, 3, 4))’

Last modified: Mon Mar 31 15:42:15 2014 Lecture #25: Calculator 6

Evaluation

Evaluation discovers the form of an expression and then executes a
corresponding evaluation rule.

• Primitive expressions (literals) “evaluate to themselves” (corresponds
to Exps evaluating to their .values.)

• Call expressions are evaluated recursively, following the tree struc-
ture:

– Evaluate each operand expression, collecting values as a list of
arguments.

– Apply the named operator to the argument list.

def calc_eval(exp):

"""Evaluate a Calculator expression."""

if exp.is_primitive:

return exp.value

else:

Last modified: Mon Mar 31 15:42:15 2014 Lecture #25: Calculator 7

Applying Operators

Calculator has a fixed set of operators that we can enumerate

def calc_apply(operator, args):

"""Apply the named operator to a list of args (which are numbers).

if operator in (’add’, ’+’):

return sum(args)

if operator in (’sub’, ’-’):

if len(args) == 0:

raise TypeError(operator + ’requires at least 1 argument’)

if len(args) == 1:

return -args[0]

return sum(args[:1] + [-arg for arg in args[1:]])

etc.

Last modified: Mon Mar 31 15:42:15 2014 Lecture #25: Calculator 8

Read-Eval-Print Loop

The user interface to many programming languages is an interactive
loop that

• Reads an expression from the user

• Parses the input to build an expression tree

• Evaluates the expression tree

• Prints the resulting value of the expression

def read_eval_print_loop():

"""Run a read-eval-print loop for calculator."""

while True:

try:

expression_tree = calc_parse(input(’calc> ’))

print(calc_eval(expression_tree))

except:

print error message and recover

Last modified: Mon Mar 31 15:42:15 2014 Lecture #25: Calculator 9

Parsing: Lexical and Syntactic Analysis

• To parse a text is to analyze it into its constituents and to describe
their relationship or structure.

• Thus, we can parse an English sentence into nouns, verbs, adjectives,
etc., and determine what plays the role of subject, what is plays the
role of object of the action, and what clauses or words modify what.

• When processing programming languages, we typically divide task
into two stages:

– Lexical analysis (aka tokenization): Divide input string into mean-
ingful tokens, such as integer literals, identifiers, punctuation
marks.

– Syntactic analysis: Convert token sequence into trees that re-
flect their meaning.

Last modified: Mon Mar 31 15:42:15 2014 Lecture #25: Calculator 10

Parsing Strategy

"+(3, *(- (add(8, 10)), 2))"

Tokenize

[’+’, ’(’, ’3’, ’,’, ’*’, ’(’, ’-’, ’(’, ’add’, ’(’, ’8’, . . .]

Analyze +

3 *

.

Last modified: Mon Mar 31 15:42:15 2014 Lecture #25: Calculator 11

Tokenization

• In principle, we could dispense with tokenizing and go from text to
trees directly, but

• We choose to break input into these particular chunks because they
correspond to how we think about and describe the text, and thus
make analysis simpler:

– We say “the word ‘add’ ”, not “the character ‘a’ followed by the
character ‘d’. . . ”

– We don’t mention spaces at all.

• In production compilers, the lexical analyzer typically returns more
information, but the simple tokens will do for this problem.

Last modified: Mon Mar 31 15:42:15 2014 Lecture #25: Calculator 12

Quick-and-Dirty Tokenizing

• For our simple purposes, we can use a few simple Python routines to
do the job.

• For example, suppose all our tokens were separated by whitespace
we could use the .split() method on strings to break up the input:

>>> " add (2 , 2) ".split()

[’add’, ’(’, ’2’, ’,’, ’2’, ’)’]

• [Gee. How did I find out about this useful method? What prompted
me to go looking?]

• So now, we just need to get a string with everything separated.

Last modified: Mon Mar 31 15:42:15 2014 Lecture #25: Calculator 13

Quick-and-Dirty Tokenizing: Adding Blanks

• Since integer literals and words (like ‘add’ or ‘+’) are not supposed
to be next to each other in the syntax, it would suffice to surround
any punctuation characters with spaces.

def tokenize(line):

"""Convert a string into a list of tokens."""

spaced = line with spaces around ’(’, ’)’, and ’,’
return spaced.split()

• Option 1: Use the .replace method on strings:

spaced = line.replace(’(’,’ (’).replace(’)’,’) ’).replace(’,’, ’ , ’)

• Option 2: same as Option 1, but use a loop to make it more easily
extensible:

punc = "(),"

spaced = line

for c in "(),":

spaced = spaced.replace(c, ’ ’ + c + ’ ’)

• Option 3: Import the package re, and use pattern replacement:

spaced = re.sub(r’([(),])’, r’ \1 ’, line)

Last modified: Mon Mar 31 15:42:15 2014 Lecture #25: Calculator 14

Syntactic Analysis: Find the Recursion

• Consider the definition of a calculator expression:

– A numeral, or

– An operator, followed by a ‘(’, followed by a sequence of calculator
expressions separated by commas, followed by a right parenthe-
sis.

• The recursion in the definition suggests the recursive structure of
our analyzer.

• This particular syntax has two useful properties:

– By looking at the first token of a calculator expression, we can
tell which of the two branches above to take, and

– By looking at the token immediately after each operand, we can
tell when we’ve come to the end of an operand list.

• That is, we can predict on the basis of the next (as-yet unpro-
cessed) token, what we’ll find next.

• Allows us to build a predictive recursive-descent parser that uses
one token of lookahead.

Last modified: Mon Mar 31 15:42:15 2014 Lecture #25: Calculator 15

Analysis from the Top

• Plan: organize our program into two mutually recursive functions:
one for expressions, and one for operand lists.

• Each of these will input a list of tokens and consume (remove) the
tokens comprising the expression or list it finds, returning tree(s).

def analyze(tokens):

>>> tokens = [’+’, ’(’, ’1’, ’,’, ’3’, ’)’]

>>> analyze(tokens)

Exp(’+’, [Exp(1), Exp(3)])

>>> tokens

[]

>>> tokens = [’1’, ’,’, ’3’, ’)’]

>>> analyze(tokens)

Exp(1)

>>> tokens

[’,’, ’3’, ’)’]

"""

Last modified: Mon Mar 31 15:42:15 2014 Lecture #25: Calculator 16

Limitations of Predictive Parsers

• Not all languages lend themselves to predictive parsing.

• Consider the English sentence:

Subject of the sentence
︷ ︸︸ ︷

The horse raced past the barn fell.

• This is an example of a garden-path sentence:

– You expect (might reasonably predict) that the subject is “The
horse,” and ends just before “raced.”

– But “raced” here means “that was raced,” which you can’t tell until
you get to the last word.

• One can use backtracking in this case (like the maze program).

• Requires a different program structure.

Last modified: Mon Mar 31 15:42:15 2014 Lecture #25: Calculator 17

	Lecture #25: Calculator
	A Sample Language: Calculator
	Syntax and Semantics of Calculator
	Strategy
	 Expression Trees (augmented)
	Expression Trees By Hand
	Evaluation
	Applying Operators
	Read-Eval-Print Loop
	Parsing: Lexical and Syntactic Analysis
	Parsing Strategy
	Tokenization
	Quick-and-Dirty Tokenizing
	Quick-and-Dirty Tokenizing: Adding Blanks
	Syntactic Analysis: Find the Recursion
	Analysis from the Top
	Limitations of Predictive Parsers

