
Lecture 27: Anatomy of an Interpreter

Last modified: Mon Apr 7 13:57:29 2014 CS61A: Lecture #27 1



Interpreting Scheme

• Your project will have a structure similar to the calculator:

– Split input into tokens, which are themselves Scheme values.

– Parse the tokens into Scheme expressions, which are also Scheme
values.

– Evaluate the expressions to produce Scheme values.

Last modified: Mon Apr 7 13:57:29 2014 CS61A: Lecture #27 2



Evaluation

Evaluation breaks into cases:

• Numerals, strings, booleans, and the empty list “evaluate to them-
selves” (are “self-evaluating”):

3 ===> 3 () ===> () #t ===> #t "hello" ===> "hello"

[Here, E ===> V means “expression E evaluates to value V ”]

• Symbols are evaluated in the current environment (a Python data
structure that is internal to the interpreter).

(define x 3) ;; Sets x to 3 in the current environment

x ===> 3

• Combinations (represented by Scheme pairs) are either

– Special forms (like define or if), each of which is a special case:

(if (> 3 2) 1 (/ 2 0)) ===> 1

– or Function calls

(+ 1 2) ===> 3

Last modified: Mon Apr 7 13:57:29 2014 CS61A: Lecture #27 3



Metacircularity: Scheme in Scheme

• Tokens, expressions, and the results of evaluating them are all Scheme
values.

• We could represent environment frames as well with a Scheme data
structure (an association list, as described in Lecture #26).

• At that point, it becomes evident we could easily write this Scheme
interpreter in Scheme!

• As we’ll see, an observation very much like this led to a major earth-
quake in 20th century mathematics—one that you’ll actually be able
to understand just from the content of this course!

Last modified: Mon Apr 7 13:57:29 2014 CS61A: Lecture #27 4



Major Pieces

• read_eval_print_loop is the main loop of the program, which takes
over after initialization. It simply reads Scheme expressions from
an input source, evaluates them, and (if required) prints them, catch-
ing errors and repeating the process until the input source is ex-
hausted.

• tokenize_lines in scheme_tokens.py turns streams of characters
into tokens. You don’t have to write it, but you should understand it.

• scm_read parses streams of tokens into Scheme expressions. It’s a
very simple example of a recursive-descent parser.

• The class Frame embodies environment frames. You fill in the method
that creates local environments.

• scheme_eval evaluates an expression.

• scheme_apply Evaluates a call on a function once the arguments are
evaluated.

• Basic (primitive) functions are implemented directly by the inter-
preter (in Python).

Last modified: Mon Apr 7 13:57:29 2014 CS61A: Lecture #27 5



Function Calls

• The idea here is a “mutually recursive dance” between two parties:

– scheme_eval, which evaluates operator and operands, and

– scheme_apply, which applies functions to the resulting values.

• The intepreter sees the expression

(f (+ 1 2) y)

(which is Scheme data). What does it do?

• First, it identifies this as a call: it’s a non-empty list, and its first
item is not “special” (like if).

• So it (recursively) evaluates f, (+ 1 2), and y, giving a function and
two other values.

• Now it calls the function with those arguments, using scheme_apply.

• If f is a non-primitive function (defined via define in the same pro-
gram), then apply will eventually have to evaluate its body. . .

• . . . for which it uses scheme_eval.

• And so it goes, back and forth between scheme_eval and scheme_apply

until we get down to primitive functions and other base cases.
Last modified: Mon Apr 7 13:57:29 2014 CS61A: Lecture #27 6



Tail Recursion

• Consider

(define (list-ref L k)

(if (= k 0) (car L) (list-ref (cdr L) (- k 1))))

• This is a tail-recursive call. According to Scheme semantics, it must
work, regardless of the length of L—no “stack overflow” allowed.

• But if the interpreter naively calls scheme_eval to evaluate the
body, which calls scheme_apply to make the recursive call, which
calls scheme_eval to evaluate the body. . . , there will be trouble!

Last modified: Mon Apr 7 13:57:29 2014 CS61A: Lecture #27 7



Dealing With Tail Recursion

• To handle tail recursion, you’ll actually implement a slightly modified
version of scheme_eval, one which partially evaluates its argument,
performing one “evaluation step.”

• Each evaluation step returns either a value (in which case, evaluation
of the expression is done),

• or replaces a tail-recursive call and current environment with the
the body of the function and that function’s environment (and loops).

Last modified: Mon Apr 7 13:57:29 2014 CS61A: Lecture #27 8



Example

• Consider again the tail-recursive example:

;; Element #K of L

(define (list-ref L k)

(if (= k 0) (car L) (list-ref (cdr L) (- k 1))))

• We want to evaluate (list-ref ’(3 5 7) 2).

• Let’s represent the state of an evaluation as a stack of “evaluation
frames” (class Evaluation), each of which looks like this when par-
tially evaluated:

Expression Value Environment
(list-ref (cdr L) (- n 1)) L: (3 5 7), k: 2, globals

or like this when fully evaluated:

7 L: (7), k: 0, globals

Last modified: Mon Apr 7 13:57:29 2014 CS61A: Lecture #27 9



Example: list-ref

(define (list-ref L k)

(if (= k 0) (car L) (list-ref (cdr L) (- k 1))))

First, the call:

Expression Value Environment
(list-ref ’(1 2 3) 2) globals

After evaluating the quoted expression, we replace the call with the
body:

Expression Value Environment

(if . . . ) L: (3 5 7), k: 2, globals

Now evaluate the condition (recursively, in another Evaluation):

Expression Value Environment

(= k 0) L: (3 5 7), k: 2, globals
(if . . . ) L: (3 5 7), k: 2, globals

Last modified: Mon Apr 7 13:57:29 2014 CS61A: Lecture #27 10



Example (contd.)

Expression Value Environment

(= k 0) L: (3 5 7), k: 2, globals
(if . . . ) L: (3 5 7), k: 2, globals

Evaluate the primitive function call =:

Expression Value Environment

#f L: (3 5 7), k: 2, globals
(if . . . ) L: (3 5 7), k: 2, globals

Which causes us to replace the if with its “false” branch:

Expression Value Environment

(list-ref (cdr L) (- k 1)))) L: (3 5 7), k: 2, globals

Last modified: Mon Apr 7 13:57:29 2014 CS61A: Lecture #27 11



Example (contd.)

Expression Value Environment

(list-ref (cdr L) (- k 1)))) L: (3 5 7), k: 2, globals

After evaluating list-ref (to get a function), (cdr L), and (- k

1) (recursively, each in its own Evaluation), we replace the call on
list-ref with the body:

Expression Value Environment

(if . . . ) L: (5 7), k: 1, globals

and so on. Thus, the stack of evaluations-in-progress does not keep
growing.

Last modified: Mon Apr 7 13:57:29 2014 CS61A: Lecture #27 12



Handling Special Forms

• In your project, the “special” forms (expressions that don’t obey the
usual evaluate-all-operands-and-call rule) all get handled by epony-
mous functions (e.g., do_cond_form).

• Unlike scheme_apply, they exert explicit control over their operand’s
evaluation.

• Some special forms can be rewritten into equivalent Scheme expres-
sions that replace the original, but this is up to the implementor.

• In fact, full Scheme hasmacros (which you can add for extra credit),
which are Scheme functions that produce Scheme expressions. To
evaluate a macro call, an interpreter:

– Calls the macro function without evaluating its operands (“quotes
the operands”), getting back a Scheme expression.

– It then evaluates the expression that is returned.

• It is a powerful, but often messy, feature.

Last modified: Mon Apr 7 13:57:29 2014 CS61A: Lecture #27 13


	Lecture 27: Anatomy of an Interpreter
	Interpreting Scheme
	Evaluation
	Metacircularity: Scheme in Scheme
	Major Pieces
	Function Calls
	Tail Recursion
	Dealing With Tail Recursion
	Example
	Example: list-ref
	Example (contd.)
	Example (contd.)
	Handling Special Forms

