
Lecture 29: Generators, Streams, and Lazy Evaluation

• Some of the most interesting real-world problems in computer sci-
ence center around sequential data.

– DNA sequences.

– Web and cell-phone traffic streams.

– The social data stream.

– Series of measurements from instruments on a robot.

– Stock prices, weather patterns.

• . . . which perhaps is why Python (and other languages) devote a lot
of attention to them.

Last modified: Fri Apr 11 15:34:47 2014 CS61A: Lecture #29 1

Classes of sequences

• We started with tuples and lists, which are collections of data that
are computed before being used.

• Constructs such as for first turn these into iterators, which are
functions that compute values as they are asked for.

• There’s no particular reason why these data have to have been com-
puted beforehand.

• For example, in Lecture 17, we had a type Range, which was like
Python’s type range:

class Range:

def __init__(self, low, high):

self._low = low

self._high = high

def __iter__(self):

return RangeIter(self)

• A Range is a sequence (low to high), whose individual members are
not stored, and are produced (by RangeIter) only when needed.

Last modified: Fri Apr 11 15:34:47 2014 CS61A: Lecture #29 2

Generators

• Iterators are objects whose __next__ method produces values.

• Each call to __next__ completes before producing a value, so the
iterator object must explicitly store the state needed to figure out
where in the sequence one is. This can be annoying.

• Python also provides an entirely different mechanism for this pur-
pose: the generator.

• A generator is a kind of suspendable function or coroutine.

• A special statement, yield E, means “stop executing this function
for the time being, and hand the value E back to whoever called
you.”

• When the generator function is next called, it picks up where it left
off.

Last modified: Fri Apr 11 15:34:47 2014 CS61A: Lecture #29 3

Example: Range redux

• An alternative definition of Range:

class Range:

def __init__(self, low, high): self._low = low; self._high = high

def __iter__(self): return self._generate()

def _generate(self):

i = self._low

while i < self._high:

yield i

i += 1

To use:

for x in Range(0, 10):

print(x)

• Calling self._generate() creates a generator (any function containing
a yield produces a generator when called).

• Calling __next__ or send on the generator then resumes execution
(the first time at the beginning) until getting to yield, which tells
what value to return.

• If instead control reaches the end, the caller gets a StopIteration

Last modified: Fri Apr 11 15:34:47 2014 CS61A: Lecture #29 4

Generators Within Generators

• In Lectures #22 and #23, there were tree iterators producing the
results of a traversal. It was considerably more complex than a
simple recursive traversal.

• Generators make it easier:

class BinTree:

...

def preorder_values(self):

if not self.is_empty:

yield self.label

yield from self.left.preorder_values()

yield from self.right.preorder_values()

• The yield from G syntax takes a generator, G, and in effect per-
forms:

for v in G: yield v

• It’s really easy to change this to a postorder or inorder traversal!

Last modified: Fri Apr 11 15:34:47 2014 CS61A: Lecture #29 5

Finite to Infinite

Currently, all our sequence data structures share common limitations:

• Each item must be explicitly represented, even if all can be gener-
ated by a common formula or function

• Sequence must be complete before we start iterating over it.

• Can’t be infinite. Who cares?

– “Infinite” in practical terms means “having an unknown bound”.

– Such things are everywhere.

– Internet and cell phone traffic.

– Instrument measurement feeds, real-time data.

– Mathematical sequences.

Last modified: Fri Apr 11 15:34:47 2014 CS61A: Lecture #29 6

Streams: A Lazy Structure

We’ll define a Stream to look like an rlist whose rest is computed lazily.

class Stream(object):

"""A lazily computed recursive list."""

def __init__(self, first, compute_rest, empty=False):

self.first = first

self._compute_rest = compute_rest

self.empty = empty

self._rest = None

self._computed = False

@property

def rest(self):

assert not self.empty, ’Empty streams have no rest.’

if not self._computed:

self._rest = self._compute_rest()

self._computed = True

return self._rest

empty_stream = Stream(None, None, True)

Last modified: Fri Apr 11 15:34:47 2014 CS61A: Lecture #29 7

Example: The positive integers (all of them)

def make_integer_stream(first=1):

"""An infinite stream of increasing integers, starting at FIRST.

def compute_rest():

return make_integer_stream(first+1)

return Stream(first, compute_rest)

>>> ints = make_integer_stream(1)

>>> ints.first

1

>>> ints.rest.first

2

Last modified: Fri Apr 11 15:34:47 2014 CS61A: Lecture #29 8

Integer Streams in Action

• Initially, L=make_integer_stream(1) consists of one item with

L.first = 1, L._computed = False

• When we fetch L.rest, it becomes

L.first = 1, L._computed = True; L._rest = L2,

where

L2.first = 2, L2._computed = False

• And so forth.

Last modified: Fri Apr 11 15:34:47 2014 CS61A: Lecture #29 9

Mapping Streams

Familiar operations on other sequences can be extended to streams:

def map_stream(fn, s):

"""Stream of values of FN applied to the elements of stream S."""

if s.empty:

return s

def compute_rest():

return map_stream(fn, s.rest)

return Stream(fn(s.first), compute_rest)

def combine_streams(fn, s0, s1):

"""Stream of the elements of S0 and S1 combined in pairs with

two-argument function FN."""

def compute_rest():

return combine_streams(fn, s0.rest, s1.rest)

if s0.empty or s1.empty:

return empty_stream

else:

return Stream(fn(s0.first, s1.first), compute_rest)

Last modified: Fri Apr 11 15:34:47 2014 CS61A: Lecture #29 10

Filtering Streams

Another example:

def filter_stream(fn, s):

"""Return a stream of the elements of S for which FN is true."""

if s.empty:

return s

def compute_rest():

return filter_stream(fn, s.rest)

if fn(s.first):

return Stream(s.first, compute_rest)

return compute_rest()

Last modified: Fri Apr 11 15:34:47 2014 CS61A: Lecture #29 11

A Few Conveniences

To look at streams a bit more conveniently, let’s also define:

def truncate_stream(s, k):

"""A stream of the first K elements of stream S."""

if s.empty or k == 0:

return empty_stream

def compute_rest():

return truncate_stream(s.rest, k-1)

return Stream(s.first, compute_rest)

def stream_to_list(s):

"""A list containing the elements of (finite) stream S."""

r = []

while not s.empty:

r.append(s.first)

s = s.rest

return r

Last modified: Fri Apr 11 15:34:47 2014 CS61A: Lecture #29 12

Finding Primes

def primes(pos_stream):

"""Return a stream of members of POS_STREAM that are not

evenly divisible by any previous members of POS_STREAM.

POS_STREAM is a stream of increasing positive integers.

>>> p1 = primes(make_integer_stream(2))

>>> stream_to_list(truncate_stream(p1, 7))

[2, 3, 5, 7, 11, 13, 17]

>>> p2 = primes(iterator_to_stream(positives()).rest)

>>> stream_to_list(truncate_stream(p2, 7))

[2, 3, 5, 7, 11, 13, 17]

"""

def not_divisible(x):

return x % pos_stream.first != 0

def compute_rest():

return primes(filter_stream(not_divisible, pos_stream.rest))

return Stream(pos_stream.first, compute_rest)

Last modified: Fri Apr 11 15:34:47 2014 CS61A: Lecture #29 13

Recursive Streams

What do you suppose we get from this?

f = Stream(1,

lambda: Stream(1,

lambda: combine_streams(add, f, f.rest)))

stream_to_list(truncate_stream(f, 20))

Last modified: Fri Apr 11 15:34:47 2014 CS61A: Lecture #29 14

	Lecture 29: Generators, Streams, and Lazy Evaluation
	Classes of sequences
	Generators
	Example: Range redux
	Generators Within Generators
	Finite to Infinite
	Streams: A Lazy Structure
	Example: The positive integers (all of them)
	 Integer Streams in Action
	Mapping Streams
	Filtering Streams
	A Few Conveniences
	Finding Primes
	Recursive Streams

