
Lecture 30: Mostly Project 4 Overview

Last modified: Mon Apr 14 16:20:20 2014 CS61A: Lecture #30 1

Stream Example

f = Stream(1,

lambda: Stream(1,

lambda: combine_streams(add, f, f.rest)))

• This creates a new stream that initially contains only one item and a
lazy continuation:

f = [1, lambda: Stream(1, lambda: combine_streams(add, f, f.rest)))]

• If I ask for f.rest, I get

f = [1, 1, lambda: combine_streams(add, f, f.rest)))]

• And now f.rest.rest:

f = [1, 1, 2, lambda: combine_streams(add, f.rest, f.rest.rest)))]

• And now f.rest.rest.rest:

f = [1, 1, 2, 3,

lambda: combine_streams(add, f.rest.rest, f.rest.rest.rest)))]

• Do you see where this is going?

Last modified: Mon Apr 14 16:20:20 2014 CS61A: Lecture #30 2

Project Comments

• This project is about reading programs as well as writing them. Don’t
just treat the framework you’re given as a bunch of magic incanta-
tions. Try to understand and learn from it.

• Don’t allow yourself to get lost. Keep asking about things you don’t
understand until you do understand.

• You are always free to introduce auxiliary functions to help imple-
ment something. You do not have to restrict your changes to the
specifically marked areas.

• You are also free to modify the framework outside of the indicated
areas in any other way you want, as long as you meet the require-
ments of the project.

– Feel free to add new Turtle methods to scheme_primitives.py

or new standard functions to scheme_prelude.scm.

– Feel free to refactor code.

– ALWAYS feel free to fix bugs in the framework (and tell us via
email!).

• Stay in touch with your partner! If you’re having problems getting
along, tell us early, or we probably won’t be able to help.

Last modified: Mon Apr 14 16:20:20 2014 CS61A: Lecture #30 3

Interpreting Scheme

• Your project will have a structure similar to the calculator:

– Split input into tokens.

– Parse the tokens into Scheme expressions.

– Evaluate the expressions.

• Evaluation breaks into cases:

– Numerals and booleans evaluate to themselves.

– Symbols are evaluated in the current environment (needs a data
structure).

– Combinations are either

∗ Special forms (like define or if), each of which is a special
case, or

∗ Function calls

Last modified: Mon Apr 14 16:20:20 2014 CS61A: Lecture #30 4

Major Pieces

• read_eval_print_loop is the main loop of the program, which takes
over after initialization. Reads Scheme expressions from an input
source, evaluates (interprets) them, and prints the result, catching
errors and repeating the process until the input source is exhausted.

• tokenize_lines in scheme_tokens.py turns streams of characters
into tokens. You don’t have to write it, but you should understand it.

• The function scheme_read parses streams of tokens into Scheme
expressions. It’s a very simple example of a recursive-descent parser.

• The class Frame embodies environment frames. You fill in the method
that creates local environments.

• The scheme_eval function evaluates a Scheme expression. Under-
stand how it all works and fill in the missing bits.

• scheme_primitives.py defines the basic Scheme expression data
structure (aside from functions) and implements the “native” meth-
ods (those implemented directly in the host language: Python, or in
other compilers, C).

Last modified: Mon Apr 14 16:20:20 2014 CS61A: Lecture #30 5

Scheme Values

• The project uses an object-oriented approach in its internal repre-
sentation of values.

• The class SchemeValue is at the top of the hierarchy. Defines de-
fault definitions of all methods.

• SchemeValue is (in effect) abstract: there are no objects whose
type is just plain SchemeValue.

• Instead, all Scheme values are represented by subtypes of SchemeValue.

Last modified: Mon Apr 14 16:20:20 2014 CS61A: Lecture #30 6

Type Hierarchy

• SchemeValue

– SchemeNumber

∗ SchemeInt: 3

∗ SchemeFloat: 2.5

– SchemeSymbol: foo (value of ’foo)

– SchemeStr: "bar"

– scheme_true, scheme_false: #t, #f

– Pair: (1 . 2)

– nil: ()

– Procedure

∗ PrimitiveProcedure: value of +

∗ LambdaProcedure: value of (lambda (x) x)

∗ MuProceure (extension)

∗ NuProcedure (extra-credit extension)

– okay: the “undefined value”

Last modified: Mon Apr 14 16:20:20 2014 CS61A: Lecture #30 7

Example: Implementing apply

• Obvious way to handle, e.g., function application:

def scheme_apply(procedure, args, env):

if isinstance(procedure, PrimitiveProcedure):

Apply primitive procedure
elif isinstance(procedure, LambdaProcedure):

Apply lambda procedure
...

else:

raise SchemeError("not a procedure")

• That is, all code about function application is collected in one place,
with a bunch of conditionals to figure out which to use.

• Adding a new type of procedure means also modifying this function
and any other such collective function on procedure values.

Last modified: Mon Apr 14 16:20:20 2014 CS61A: Lecture #30 8

Example: The Object-Oriented Approach

• Our project uses a different approach, typical of object-oriented
designs:

• scheme_apply calls procedure.apply(args, env), a method in all
SchemeValues.

• Then, there are definitions for each type that supports function
application:

class SchemeValue:

def apply(self, args, env): raise SchemeError("not a procedure")

...

class Procedure(SchemeValue):

...

class PrimitiveProcedure(Procedure):

def apply(self, args, env): Apply primitive procedure
...

class LambdaProcedure(Procedure):

def apply(self, args, env): Apply lambda procedure
...

• Other classes, such as SchemeInt, inherit the default (error) defi-
nition from SchemeValue.

Last modified: Mon Apr 14 16:20:20 2014 CS61A: Lecture #30 9

The scheme eval function

• Could use an object-oriented approach for scheme_eval, the func-
tion that interprets Scheme values as Scheme programs.

• But representing Scheme programs is just one of many uses.

• Makes less sense to build evaluation functions into, e.g., class Pair.

• So our scheme_eval uses the alternative approach of explicit type
or value testing to decide what to do.

• For example (simplified from the project):

def scheme_eval(expr, env):

...

if scheme_symbolp(expr):

return env.lookup(expr)

elif scheme_atomp(expr):

return expr

elif not scheme_listp(expr):

raise SchemeError("malformed list")

else: Handle combinations

Last modified: Mon Apr 14 16:20:20 2014 CS61A: Lecture #30 10

Special Forms

• The Scheme special forms (e.g., (lambda ...), (if ...)) are those
that are not treated as plain function calls (evaluate arguments, ap-
ply function).

• They all take the same arguments—the rest of the form and the
environment—and all return the same thing: a new expression and a
new environment.

• So we use a dispatch table to handle them:

if (scheme_symbolp(first) and first in SPECIAL_FORMS):

...

expr, env = SPECIAL_FORMS[first](expr.second, env)

...

Last modified: Mon Apr 14 16:20:20 2014 CS61A: Lecture #30 11

Nu Procedures

• One of the extra-credit problems has you introduce call-by-name
parameter passing.

• Idea is to have a type of procedure that evaluates its arguments
lazily—only when their value is actually needed.

• The term for the usual evaluate-arguments-and-apply semantics is
applicative-order evaluation.

• This lazy evaluation is known as normal-order evaluation.

• For example, here’s an example you’ve seen in HW#1 in another
form:

(define if-function

(nu (test true-part false-part) (if test true-part false-part)))

• If if-function were an ordinary (lambda) function, then the call
(if-function (zero? x) 1 (/ 1 x)) would fail if x is 0.

• But as a call-by-name function, the division is never executed in that
case.

Last modified: Mon Apr 14 16:20:20 2014 CS61A: Lecture #30 12

Tail recursion

• You’ll see that scheme_eval is a bit more complicated than what
we’ve talked about.

• It contains a loop so that a single call might involve several function
applications or expression evaluations.

• However, to start with, things are arranged “classically”:

– For a call, scheme_eval evaluates the operands recursively, ap-
plies the resulting procedure to the resulting argument values,
and returns the result.

• For the first extra-credit problem, you’ll be asked to modify scheme_eval
to instead loop instead of recurse when it is possible to do so cor-
rectly.

• Hint: this is a very easy extra-credit problem!

Last modified: Mon Apr 14 16:20:20 2014 CS61A: Lecture #30 13

	Lecture 30: Mostly Project 4 Overview
	Stream Example
	Project Comments
	Interpreting Scheme
	Major Pieces
	Scheme Values
	Type Hierarchy
	Example: Implementing apply
	Example: The Object-Oriented Approach
	The scheme_eval function
	Special Forms
	Nu Procedures
	Tail recursion

