
Lecture 31: Declarative Programming
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Imperative vs. Declarative

• So far, our programs are explicit directions for solving a problem;
the problem itself is implicit in the program.

• Declarative programming turns this around:

– A “program” is a description of the desired characteristics of a
solution.

– It is up to the system to figure out how to achieve these charac-
teristics.

• Taken to the extreme, this is a very difficult problem in AI.

• However, people have come up with interesting compromises for
small problems.

• For example, constraint solvers allow you to specify relationships
between objects (like minimum or maximum distances) and then try
to find configurations of those objects that meet the constraints.
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Structured Query Language (SQL)

• For example the database world has relational databases and object-
relational databases, which represent relations between data values
as tables, such as:

ID Last Name First Names Level GPA

29313921 Smith Michelle 2 3.6
38474822 Jones Scott 3 3.2
89472648 Chan John 2 3.7
48837284 Thompson Carol 3 3.7

• SQL is a language for making queries against these tables:

SELECT * FROM Students WHERE level=’2’;

which selects the first and third rows of this table.

• We don’t say how to find these rows, just the criteria they must
satisfy.

• So SQL can be thought of as a kind of declarative programming
language.
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Prolog and Predecessors

• Way back in 1959, researchers at Carnegie-Mellon University cre-
ated GPS (General Problem Solver [A. Newell, J. C. Shaw, H. A. Si-
mon])

– Input defined objects and allowable operations on them, plus a
description of the desired outcome.

– Output consisted of a sequence of operations to bring the out-
come about.

– Only worked for small problems, unsurprisingly.

• Planner at MIT [C. Hewitt, 1969] was another programming language
for theorem proving: one specified desired goal assertion, and sys-
tem would find rules to apply to demonstrate the assertion. Again,
this didn’t scale all that well.

• Planner was one inspiration for the development of the logic-programming
language Prolog.
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Prolog (Lisp Style)

• In our sample language, the data values are (uninterpreted) Scheme
values.

• Some of these values will be deemed to be “true.”

• A logic program tells us which ones.

• As for Scheme, we’ll write logic programs using Scheme data; you
tell the data from the program by how it is used.

• For example, (likes brian potstickers) might be such an asser-
tion:

likes is a predicate that relates brian and potstickers.

• We don’t interpret the arguments of the predicate: they are just
uninterpreted data structures.
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Logical Variables

• We also allow one other type of expression: a symbol that starts
with ‘?’ will indicate a logical variable.

• Logical variables can stand for any possible Scheme value (including
one that contains logical variables).

• As an assertion, (likes brian ?X) says that any replacement of ?X
that makes the assertion true.

• As a query, (likes brian ?X) asks if there exists any value for ?X
that makes the query true.

• When the same logical variable occurs multiple times in an expres-
sion, it is replaced uniformly.

• For example, (<= ?X ?X) might assert that everything is less than
or equal to itself (or ask if there is anything less than or equal to
itself).
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Facts and Rules

• The system will look to see if the queries are true based on a database
of facts (axioms or postulates) about the predicates.

• It will inform us of what replacements for logical variables make the
assertion true.

• Each fact will have the form

(fact Conclusion Hypothesis1 Hypothesis2 . . . )

Meaning “For any substitution of logical variables in the Conclusion
and Hypotheses, we may derive the conclusion if we can derive each
of the hypotheses.”
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Example: Family Relations

• First, we enter some facts with no hypotheses (with our logic system
prompt to emphasize that this is not regular Scheme):

logic> (fact (parent george paul))

logic> (fact (parent martin george))

logic> (fact (parent martin martin_jr))

logic> (fact (parent martin donald))

logic> (fact (parent martin robert))

logic> (fact (parent george ann))

• We can now ask specific questions, such as

logic> (query (parent martin george))

Success!
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Existential Queries

• With logical variables, we can find everything that satisfies a rela-
tion.

logic> (query (parent martin ?who))

Success!

who: george

who: martin_jr

who: donald

who: robert
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Multiple Criteria

• We also allow queries in which multiple criteria must be satisfied:

logic> (query (parent ?gp ?p) (parent ?p ?c))

Success!

gp: martin p: george c: paul

gp: martin p: george c: ann

• As illustrated here, ?p is always replaced with the same value in both
clauses in which it appears.
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The Closed World

logic> (fact (parent george paul))

logic> (fact (parent martin george))

logic> (fact (parent martin martin_jr))

logic> (fact (parent martin donald))

logic> (fact (parent george ann))

logic> (query (parent martin paul))

Failed.

• Here, the facts don’t imply that Martin is the parent of Paul, so the
query fails.

• Of course, in real life it does not follow that just because you don’t
know something, it’s false.

• However, our system makes the “closed world assumption”: Anything
not derivable from the given facts is false.

• On the other hand, the system is not set up to draw conclusions
from this. . .

• . . . so can’t define (non-ancestor ?x ?y) to be true if one can’t
prove (ancestor ?x ?y).
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Compound Facts

• Now some general rules about relations:

logic> (fact (grandparent ?X ?Y) (parent ?X ?Z) (parent ?Z ?Y))

• The general form is

(Conclusion Hypothesis1 Hypothesis2...)

• From these, we ought to be able to conclude that Martin is Ann’s
grandparent, for example.
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Recursive Facts

• Now let’s generalize grandparent to ancestor:

logic> (fact (ancestor ?X ?Y) (parent ?X ?Y))

logic> (fact (ancestor ?X ?Y) (parent ?X ?Z) (ancestor ?Z ?Y))

• That is, an ancestor is either your parent, or a parent of one of your
ancestors (recursively).
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Relations, Not Functions

• In this style of programming, we don’t define functions, but rather
relations.

– Instead of saying “(abs -3) yields 3”,. . .

– We say “(abs -3 3) is true” (or, “-3 stands in the abs relation to
3.”)

– Instead of “(add x y) yields z”,. . .

– we say “(add x y z) is true.”

• The distinction between operand and result is eliminated.

• This will allow us to run programs “both ways”: from inputs to out-
puts, or from outputs to inputs.
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