
Lecture 31: Declarative Programming

Last modified: Wed Apr 16 14:00:52 2014 CS61A: Lecture #31 1



Imperative vs. Declarative

• So far, our programs are explicit directions for solving a problem;
the problem itself is implicit in the program.

• Declarative programming turns this around:

– A “program” is a description of the desired characteristics of a
solution.

– It is up to the system to figure out how to achieve these charac-
teristics.

• Taken to the extreme, this is a very difficult problem in AI.

• However, people have come up with interesting compromises for
small problems.

• For example, constraint solvers allow you to specify relationships
between objects (like minimum or maximum distances) and then try
to find configurations of those objects that meet the constraints.

Last modified: Wed Apr 16 14:00:52 2014 CS61A: Lecture #31 2



Structured Query Language (SQL)

• For example the database world has relational databases and object-
relational databases, which represent relations between data values
as tables, such as:

ID Last Name First Names Level GPA

29313921 Smith Michelle 2 3.6
38474822 Jones Scott 3 3.2
89472648 Chan John 2 3.7
48837284 Thompson Carol 3 3.7

• SQL is a language for making queries against these tables:

SELECT * FROM Students WHERE level=’2’;

which selects the first and third rows of this table.

• We don’t say how to find these rows, just the criteria they must
satisfy.

• So SQL can be thought of as a kind of declarative programming
language.

Last modified: Wed Apr 16 14:00:52 2014 CS61A: Lecture #31 3



Prolog and Predecessors

• Way back in 1959, researchers at Carnegie-Mellon University cre-
ated GPS (General Problem Solver [A. Newell, J. C. Shaw, H. A. Si-
mon])

– Input defined objects and allowable operations on them, plus a
description of the desired outcome.

– Output consisted of a sequence of operations to bring the out-
come about.

– Only worked for small problems, unsurprisingly.

• Planner at MIT [C. Hewitt, 1969] was another programming language
for theorem proving: one specified desired goal assertion, and sys-
tem would find rules to apply to demonstrate the assertion. Again,
this didn’t scale all that well.

• Planner was one inspiration for the development of the logic-programming
language Prolog.

Last modified: Wed Apr 16 14:00:52 2014 CS61A: Lecture #31 4



Prolog (Lisp Style)

• In our sample language, the data values are (uninterpreted) Scheme
values.

• Some of these values will be deemed to be “true.”

• A logic program tells us which ones.

• As for Scheme, we’ll write logic programs using Scheme data; you
tell the data from the program by how it is used.

• For example, (likes brian potstickers) might be such an asser-
tion:

likes is a predicate that relates brian and potstickers.

• We don’t interpret the arguments of the predicate: they are just
uninterpreted data structures.

Last modified: Wed Apr 16 14:00:52 2014 CS61A: Lecture #31 5



Logical Variables

• We also allow one other type of expression: a symbol that starts
with ‘?’ will indicate a logical variable.

• Logical variables can stand for any possible Scheme value (including
one that contains logical variables).

• As an assertion, (likes brian ?X) says that any replacement of ?X
that makes the assertion true.

• As a query, (likes brian ?X) asks if there exists any value for ?X
that makes the query true.

• When the same logical variable occurs multiple times in an expres-
sion, it is replaced uniformly.

• For example, (<= ?X ?X) might assert that everything is less than
or equal to itself (or ask if there is anything less than or equal to
itself).

Last modified: Wed Apr 16 14:00:52 2014 CS61A: Lecture #31 6



Facts and Rules

• The system will look to see if the queries are true based on a database
of facts (axioms or postulates) about the predicates.

• It will inform us of what replacements for logical variables make the
assertion true.

• Each fact will have the form

(fact Conclusion Hypothesis1 Hypothesis2 . . . )

Meaning “For any substitution of logical variables in the Conclusion
and Hypotheses, we may derive the conclusion if we can derive each
of the hypotheses.”

Last modified: Wed Apr 16 14:00:52 2014 CS61A: Lecture #31 7



Example: Family Relations

• First, we enter some facts with no hypotheses (with our logic system
prompt to emphasize that this is not regular Scheme):

logic> (fact (parent george paul))

logic> (fact (parent martin george))

logic> (fact (parent martin martin_jr))

logic> (fact (parent martin donald))

logic> (fact (parent martin robert))

logic> (fact (parent george ann))

• We can now ask specific questions, such as

logic> (query (parent martin george))

Success!

Last modified: Wed Apr 16 14:00:52 2014 CS61A: Lecture #31 8



Existential Queries

• With logical variables, we can find everything that satisfies a rela-
tion.

logic> (query (parent martin ?who))

Success!

who: george

who: martin_jr

who: donald

who: robert

Last modified: Wed Apr 16 14:00:52 2014 CS61A: Lecture #31 9



Multiple Criteria

• We also allow queries in which multiple criteria must be satisfied:

logic> (query (parent ?gp ?p) (parent ?p ?c))

Success!

gp: martin p: george c: paul

gp: martin p: george c: ann

• As illustrated here, ?p is always replaced with the same value in both
clauses in which it appears.

Last modified: Wed Apr 16 14:00:52 2014 CS61A: Lecture #31 10



The Closed World

logic> (fact (parent george paul))

logic> (fact (parent martin george))

logic> (fact (parent martin martin_jr))

logic> (fact (parent martin donald))

logic> (fact (parent george ann))

logic> (query (parent martin paul))

Failed.

• Here, the facts don’t imply that Martin is the parent of Paul, so the
query fails.

• Of course, in real life it does not follow that just because you don’t
know something, it’s false.

• However, our system makes the “closed world assumption”: Anything
not derivable from the given facts is false.

• On the other hand, the system is not set up to draw conclusions
from this. . .

• . . . so can’t define (non-ancestor ?x ?y) to be true if one can’t
prove (ancestor ?x ?y).

Last modified: Wed Apr 16 14:00:52 2014 CS61A: Lecture #31 11



Compound Facts

• Now some general rules about relations:

logic> (fact (grandparent ?X ?Y) (parent ?X ?Z) (parent ?Z ?Y))

• The general form is

(Conclusion Hypothesis1 Hypothesis2...)

• From these, we ought to be able to conclude that Martin is Ann’s
grandparent, for example.

Last modified: Wed Apr 16 14:00:52 2014 CS61A: Lecture #31 12



Recursive Facts

• Now let’s generalize grandparent to ancestor:

logic> (fact (ancestor ?X ?Y) (parent ?X ?Y))

logic> (fact (ancestor ?X ?Y) (parent ?X ?Z) (ancestor ?Z ?Y))

• That is, an ancestor is either your parent, or a parent of one of your
ancestors (recursively).

Last modified: Wed Apr 16 14:00:52 2014 CS61A: Lecture #31 13



Relations, Not Functions

• In this style of programming, we don’t define functions, but rather
relations.

– Instead of saying “(abs -3) yields 3”,. . .

– We say “(abs -3 3) is true” (or, “-3 stands in the abs relation to
3.”)

– Instead of “(add x y) yields z”,. . .

– we say “(add x y z) is true.”

• The distinction between operand and result is eliminated.

• This will allow us to run programs “both ways”: from inputs to out-
puts, or from outputs to inputs.

Last modified: Wed Apr 16 14:00:52 2014 CS61A: Lecture #31 14


	Lecture 31: Declarative Programming
	Imperative vs. Declarative
	Structured Query Language (SQL)
	Prolog and Predecessors
	Prolog (Lisp Style)
	Logical Variables
	Facts and Rules
	Example: Family Relations
	Existential Queries
	Multiple Criteria
	The Closed World
	Compound Facts
	Recursive Facts
	Relations, Not Functions

