
Lecture 32: Declarative Programming (Under the Hood)

Last modified: Fri Apr 18 15:26:13 2014 CS61A: Lecture #32 1

Review: A “Schemish” Prolog

• Programs in our language define subsets of Scheme expressions that
will be considered “true.”

(fact CONCLUSION) means that CONCLUSION is to be taken as
true, for any replacement of its logical variables.

(fact CONCLUSIONHYPOTHESIS . . . ) means that CONCLUSION
is to be taken as true for all replacements of the logical variables
that cause each of the the HYPOTHESES to be true.

logical variables, represented as symbols starting with ‘?’, stand for
operands that may be replaced by other expressions (including other
logical variables).

Last modified: Fri Apr 18 15:26:13 2014 CS61A: Lecture #32 2

Another Example: Lists

• In ordinary Scheme, append (or extend in Python) is a function tak-
ing two lists and returning a list.

• In our Scheme Prolog, it is a relation between three lists, which we
define by writing two facts about it that cover all cases:

;;; (append-to-form A B C) means "appending list B to list A produces

;;; list C.

; Fact about the empty list.

(fact (append-to-form () ?x ?x))

; Fact about a general non-empty list

(fact (append-to-form (?a . ?r) ?b (?a . ?s)) ; assuming that

(append-to-form ?r ?b ?s))

Last modified: Fri Apr 18 15:26:13 2014 CS61A: Lecture #32 3

Applying append-to-form

logic> (fact (append-to-form () ?x ?x))

logic> (fact (append-to-form (?a . ?r) ?b (?a . ?s))

(append-to-form ?r ?b ?s))

logic> (query (append-to-form (a b c) (d e f) (a b c d e f)))

Success!

logic> (query (append-to-form (a b c) (d e f) ?x))

Success!

x: (a b c d e f)

logic> (query (append-to-form ?x (d e f) (a b c d e f)))

Success!

x: (a b c)

logic> (query (append-to-form (a b c) ?y (a b c d e f)))

Success!

y: (d e f)

logic> (query (append-to-form (a . ?r) ?x (a b c d e f)))

???

Last modified: Fri Apr 18 15:26:13 2014 CS61A: Lecture #32 4

Permutations (Anagrams)

• When is list B a permutation (reordering) of A?

• An obvious fact:

logic> (fact (permutation () ()))

• Key fact: every permutation of (a . R) consists of a permutation
of R with a inserted somewhere in that permutation:

(0 1 2 3 4) ===> (4 3 1 2)
⇑
0

• Or, in our logic language:

logic> (fact (permutation (?a . ?r) ?s)

(permutation ?r ?t) (insert ?a ?t ?s))

where we intend (insert x L0 L1) to mean that inserting x into
L0 (at the right place) gives L1:

logic> (fact (insert ?a ?r (?a . ?r)))

logic> (fact (insert ?a (?b . ?r) (?b . ?s)) (insert ?a ?r ?s))

1

Last modified: Fri Apr 18 15:26:13 2014 CS61A: Lecture #32 5

Operational and Declarative Meanings

• An assertion

(fact (eats ?P ?F) (hungry ?P) (has ?P ?F) (likes ?P ?F))

means that for any replacement of ?P (e.g., ‘brian’) and ?F (e.g., ‘pot-
stickers’) throughout the rule:

Declarative Meaning If brian is hungry and has potstickers and
likes potstickers, then brian will eat potstickers.

Operational Meaning To show that brian will eat potstickers,
show that brian is hungry, then that brian has potstickers, and
then that brian likes potstickers.

• The declarative meaning allows us to look at our Scheme-Prolog pro-
gram as a logical specification of a problem for which the system is
to find a solution.

• The operational meaning allows us to look at our Scheme-Prolog spec-
ification as an executable program for searching for a solution.

• Closed Universe Assumption: We make only positive statements.
The closest we come to saying that something is false is to say that
we can’t prove it.

Last modified: Fri Apr 18 15:26:13 2014 CS61A: Lecture #32 6



Unification

• In general, our system, given a target expression involving a predi-
cate to prove, must find a fact that might assert that target, given
a suitable replacement of logical variables.

• To do this, we try to pattern-match the conclusions of all our facts
against the target expression.

• The pattern matching is called unification, [J. A. Robinson].

(likes brian potstickers)

(likes ?P ?F)















True: {P: brian, F: potstickers}

• The substitution itself (the dictionary on the right) is called a unifier.

Last modified: Fri Apr 18 15:26:13 2014 CS61A: Lecture #32 7

Unification (II)

• The substitution has to be uniform:

(le 0 1)

(le ?x ?x)















False

• And logical variables may appear in either expression (unification is
symmetric).

(related (a b c) ?x )

(related ?x (a . ?r))















True: { x: (a b c), r: (b c) }

• It is possible for logical variables to be unified with each other:

(likes ?P yams)

(likes ?Q ?F )















True: { P: ?Q, F: yams }, or { Q: ?P, F: yams }

Last modified: Fri Apr 18 15:26:13 2014 CS61A: Lecture #32 8

Implementing Unification

• A plain, unbound logical variable will unify with anything. Must record
this unification in the unifier we construct.

• Before unifying other (bound) logical variables, first must replace
them with their recorded bindings, in order to make sure we bind
consistently.

• To unify two atoms (numbers, booleans, symbols that are not logical
variables), just compare them.

• To unify two lists: recursively unify their heads and tails.

Last modified: Fri Apr 18 15:26:13 2014 CS61A: Lecture #32 9

Implementing Unification: Code

A simple tree recursion with side-effects:

def unify(e, f, env):

"""Destructively extend ENV so as to unify (make equal) E and F, returning

True if this succeeds and False otherwise. ENV may be modified in either

case (its existing bindings are never changed)."""

e = lookup(e, env)

f = lookup(f, env)

if scheme_eqvp(e, f):

return True

elif isvar(e):

env.define(e, f)

return True

elif isvar(f):

env.define(f, e)

return True

elif scheme_atomp(e) or scheme_atomp(f):

return False

else:

return unify(e.first, f.first, env) and unify(e.second, f.second, env)

Last modified: Fri Apr 18 15:26:13 2014 CS61A: Lecture #32 10

Using Unification to Search for Proofs

• The process of attempting to demonstrate an assertion (answer a
query) is a systematic depth-first search of facts.

def search(clauses, env):

if clauses is nil:

yield env

for fact in fact database:

fact = rename_variables(fact, ...)

env_head = new environment that extends env

if unify(conclusion of fact, first clause, env_head):

for env_rule in search(hypotheses of fact, env_head):

for result in search(rest of clauses, env_rule):

yield result

• In the actual program, we put on a depth limit: a limit on how deeply
the recursive calls on search may go.

• This prevents us from going down infinite paths when there is a
finite path that will work.

Last modified: Fri Apr 18 15:26:13 2014 CS61A: Lecture #32 11


	Lecture 32: Declarative Programming (Under the Hood)
	Review: A ``Schemish'' Prolog
	Another Example: Lists
	Applying append-to-form
	Permutations (Anagrams)
	Operational and Declarative Meanings
	Unification
	Unification (II)
	Implementing Unification
	Implementing Unification: Code
	Using Unification to Search for Proofs

