
Lecture 33: Concurrency

• Moore’s law (“Transistors per chip doubles every N years”), where
N is roughly 2 (about 1, 000, 000× increase since 1971).

• Has also applied to processor speeds (with a different exponent).

• But predicted to flatten: further increases to be obtained through
parallel processing (witness: multicore/manycode processors).

• With distributed processing, issues involve interfaces, reliability,
communication issues.

• With other parallel computing, where the aim is performance, issues
involve synchronization, balancing loads among processors, and, yes,
“data choreography” and communication costs.

Last modified: Wed Apr 23 12:58:06 2014 CS61A: Lecture #33 1

Example of Parallelism: Sorting

• Sorting a list presents obvious opportunities for parallelization.

• Can illustrate various methods diagrammatically using comparators
as an elementary unit:

1

2

4

3

1

2

3

4

• Each vertical bar represents a comparator—a comparison operation
or hardware to carry it out—and each horizontal line carries a data
item from the list.

• A comparator compares two data items coming from the left, swap-
ping them if the lower one is larger than the upper one.

• Comparators can be grouped into operations that may happen simul-
taneously; they are always grouped if stacked vertically as in the
diagram.

Last modified: Wed Apr 23 12:58:06 2014 CS61A: Lecture #33 2

Sequential sorting

• Here’s what a sequential sort (selection sort) might look like:

4

3

2

1

3

4

2

1

3

2

4

1

3

2

1

4

2

3

1

4

2

1

3

4

1

2

3

4

• Each comparator is a separate operation in time.

• In general, there will be Θ(N 2) steps.

• But since some comparators operate on distinct data, we ought to
be able to overlap operations.

Last modified: Wed Apr 23 12:58:06 2014 CS61A: Lecture #33 3

Odd-Even Transposition Sorter

Data Comparator Separates parallel groups

Last modified: Wed Apr 23 12:58:06 2014 CS61A: Lecture #33 4

Odd-Even Sort Example

8
7
6
5
4
3
2
1

7
8
5
6
3
4
1
2

7
5
8
3
6
1
4
2

5
7
3
8
1
6
2
4

5
3
7
1
8
2
6
4

3
5
1
7
2
8
4
6

3
1
5
2
7
4
8
6

1
3
2
5
4
7
6
8

1
2
3
4
5
6
7
8

Last modified: Wed Apr 23 12:58:06 2014 CS61A: Lecture #33 5

Example: Bitonic Sorter

Data Comparator Separates parallel groups

Last modified: Wed Apr 23 12:58:06 2014 CS61A: Lecture #33 6



Bitonic Sort Example (I)

48
56
35
13
15
99
7
24
92
6
52
1
47
8
16
77

48
56
13
35
15
99
7
24
6
92
1
52
8
47
16
77

35
13
56
48
15
7
99
24
6
1
92
52
8
16
47
77

13
35
48
56
7
15
24
99
1
6
52
92
8
16
47
77

13
24
15
7
56
48
35
99
1
6
16
8
92
52
47
77

13
7
15
24
35
48
56
99
1
6
16
8
47
52
92
77

7
13
15
24
35
48
56
99
1
6
8
16
47
52
77
92

Last modified: Wed Apr 23 12:58:06 2014 CS61A: Lecture #33 7

Bitonic Sort Example (II)

7

13

15

24

35

48

56

99

1

6

8

16

47

52

77

92

7

13

15

24

16

8

6

1

99

56

48

35

47

52

77

92

7

8

6

1

16

13

15

24

47

52

48

35

99

56

77

92

6

1

7

8

15

13

16

24

47

35

48

52

77

56

99

92

1

6

7

8

13

15

16

24

35

47

48

52

56

77

92

99

Last modified: Wed Apr 23 12:58:06 2014 CS61A: Lecture #33 8

Mapping and Reducing in Parallel

• The map function in Python conceptually provides many opportunities
for parallel computation, if the computations of invididual items is
independent.

• Less obviously, so does reduce, if the operation is associative. If
list L == L1 + L2, and op is an associative operation, then

reduce(op, L) == op(reduce(op, L1), reduce(op, L2))

and the two smaller reductions can happen in parallel.

Last modified: Wed Apr 23 12:58:06 2014 CS61A: Lecture #33 9

Map-Reduce

• Googletm patented an embodiment of this approach (the validity of
which is under dispute). Here’s a very simplified version.

• User specifies a mapping operation and a reduction operation.

• In the mapping phase, the map operation is applied to each item of
data, yielding a list of key-value pairs for each item.

• The reduce operation is then applied on all the values for each dis-
tinct key.

• The final result is a list of key-value pairs, with each value being
the reduction of the values for that key as produced by the mapping
phase.

• Standard simple example:

– Each input item is a page of text.

– The map operation takes a page of text (“The cow jumped over
the moon. . . ”) and produces a list with the words as keys and the
value 1 (("the", 1), ("cow", 1), ("jumped", 1), ...).)

– The reduce phase now sums the values for each key.

– Result: for each key (word), get the total count.
Last modified: Wed Apr 23 12:58:06 2014 CS61A: Lecture #33 10

Implementing Parallel Programs

• The sorting diagrams were abstractions.

• Comparators could be processors, or they could be operations di-
vided up among one or more processors.

• Coordinating all of this is the issue.

• One approach is to use shared memory, where multiple processors
(logical or physical) share one memory.

• This introduces conflicts in the form of race conditions: processors
racing to access data.

Last modified: Wed Apr 23 12:58:06 2014 CS61A: Lecture #33 11

Memory Conflicts: Abstracting the Essentials

• When considering problems relating to shared-memory conflicts,
it is useful to look at the primitive read-to-memory and write-to-
memory operations.

• E.g., the program statements on the left cause the actions on the
right.

x = 5 WRITE 5 -> x

x = square(x) READ x -> 5

(calculate 5*5 -> 25)

WRITE 25 -> x

y = 6 WRITE 6 -> y

y += 1 READ y -> 6

(calculate 6+1 -> 7)

WRITE 7 -> y

Last modified: Wed Apr 23 12:58:06 2014 CS61A: Lecture #33 12



Conflict-Free Computation

• Suppose we divide this program into two separate processes, P1 and
P2:

x = 5

x = square(x)

y = 6

y += 1

P1 P2

WRITE 5 -> x

READ x -> 5

(calculate 5*5 -> 25)

WRITE 25 -> x

WRITE 6 -> y

READ y -> 6

(calculate 6+1 -> 7)

WRITE 7 -> y

x = 25

y = 7

• The result will be the same regardless of which process’s READs and
WRITEs happen first, because they reference different variables.

Last modified: Wed Apr 23 12:58:06 2014 CS61A: Lecture #33 13

Read-Write Conflicts

• Suppose that both processes read from x after it is initialized.

x = 5

x = square(x) y = x + 1

P1 P2

READ x -> 5

(calculate 5*5 -> 25)

WRITE 25 -> x

|

|

READ x -> 5

(calculate 5+1 -> 6)

WRITE 6 -> y

x = 25

y = 6

• The statements in P2 must appear in the given order, but they need
not line up like this with statements in P1, because the execution of
P1 and P2 is independent.

Last modified: Wed Apr 23 12:58:06 2014 CS61A: Lecture #33 14

Read-Write Conflicts (II)

• Here’s another possible sequence of events

x = 5

x = square(x) y = x + 1

P1 P2

READ x -> 5

(calculate 5*5 -> 25)

WRITE 25 -> x

|

|

|

|

|

|

READ x -> 25

(calculate 25+1 -> 26)

WRITE 26 -> y

x = 25

y = 26

Last modified: Wed Apr 23 12:58:06 2014 CS61A: Lecture #33 15

Read-Write Conflicts (III)

• The problem here is that nothing forces P1 to wait for P2 to read x

before setting it.

• Observation: The “calculate” lines have no effect on the outcome.
They represent actions that are entirely local to one processor.

• The effect of “computation” is simply to delay one processor.

• But processors are assumed to be delayable by many factors, such
as time-slicing (handing a processor over to another user’s task), or
processor speed.

• So the effect of computation adds nothing new to our simple model
of shared-memory contention that isn’t already covered by allowing
any statement in one process to get delayed by any amount.

• So we’ll just look at READ and WRITE in the future.

Last modified: Wed Apr 23 12:58:06 2014 CS61A: Lecture #33 16

Write-Write Conflicts

• Suppose both processes write to x:

x = 5

x = square(x) x = x + 1

P1 P2

|

READ x -> 5

|

|

WRITE 25 -> x

READ x -> 5

|

WRITE 6 -> x

|

x = 25

• This is a write-write conflict: two processes race to be the one that
“gets the last word” on the value of x.

Last modified: Wed Apr 23 12:58:06 2014 CS61A: Lecture #33 17

Write-Write Conflicts (II)

x = 5

x = square(x) x = x + 1

P1 P2

|

READ x -> 5

WRITE 25 -> x

|

READ x -> 5

|

|

WRITE 6 -> x

x = 6

• This ordering is also possible; P2 gets the last word.

• There are also read-write conflicts here. What is the total number
of possible final values for x? Four: 25, 5, 26, 36

Last modified: Wed Apr 23 12:58:06 2014 CS61A: Lecture #33 18



Coordinating Parallel Computation

Let’s go back to bank accounts:

class BankAccount:

def __init__(self, initial_balance):

self._balance = initial_balance

@property

def balance(self): return self._balance

def withdraw(amount):

if amount > self._balance:

raise ValueError("insufficient funds")

else:

self._balance -= amount

return self._balance

acct = BankAccount(10)

acct.withdraw(8) acct.withdraw(7)

• At this point, we’d like to have the system raise an exception for
one of the two withdrawals, and to set acct.balance to either 2 or
3, depending on with withdrawer gets to the bank first, like this. . .

Last modified: Wed Apr 23 12:58:06 2014 CS61A: Lecture #33 19

Desired Outcome

class BankAccount:

def withdraw(amount):

if amount > self._balance:

raise ValueError("insufficient funds")

else:

self._balance -= amount

return self._balance

acct = BankAccount(10)

acct.withdraw(8) acct.withdraw(7)

READ acct._balance -> 10

WRITE acct._balance -> 2

READ acct._balance -> 2

<raise exception>

But instead, we might get. . .

Last modified: Wed Apr 23 12:58:06 2014 CS61A: Lecture #33 20

Undesireable Outcome

class BankAccount:

def withdraw(amount):

if amount > self._balance:

raise ValueError("insufficient funds")

else:

self._balance -= amount

return self._balance

acct = BankAccount(10)

acct.withdraw(8) acct.withdraw(7)

READ acct._balance -> 10 READ acct._balance -> 10

WRITE acct._balance -> 2

WRITE acct._balance -> 3

Oops!

Last modified: Wed Apr 23 12:58:06 2014 CS61A: Lecture #33 21

Serializability

• We define the desired outcomes as those that would happen if with-
drawals happened sequentially, in some order.

• The nondeterminism as to which order we get is acceptable, but
results that are inconsistent with both orderings are not.

• These latter happen when operations overlap, so that the two pro-
cesses see inconsistent views of the account.

• We want the withdrawal operation to act as if it is atomic—as if,
once started, the operation proceeds without interruption and with-
out any overlapping effects from other operations.

Last modified: Wed Apr 23 12:58:06 2014 CS61A: Lecture #33 22


	Lecture 33: Concurrency
	Example of Parallelism: Sorting
	Sequential sorting
	Odd-Even Transposition Sorter
	Odd-Even Sort Example
	Example: Bitonic Sorter
	Bitonic Sort Example (I)
	Bitonic Sort Example (II)
	Mapping and Reducing in Parallel
	Map-Reduce
	Implementing Parallel Programs
	Memory Conflicts: Abstracting the Essentials
	Conflict-Free Computation
	Read-Write Conflicts
	Read-Write Conflicts (II)
	Read-Write Conflicts (III)
	Write-Write Conflicts
	Write-Write Conflicts (II)
	Coordinating Parallel Computation
	Desired Outcome
	Undesireable Outcome
	Serializability

