
Lecture 34: Synchronization and Communication

Last modified: Thu Apr 24 17:15:50 2014 CS61A: Lecture #34 1

Problem From Last Time

• Simultaneous operations on data from two different programs can
cause incorrect (even bizarre) behavior.

• Example: In

Program #1 Program #2

balance = balance + deposit balance = balance + deposit

both programs can pick up the old value of deposit before either of
them has incremented it. One deposit is lost.

• We define the desired outcomes as those that would happen if with-
drawals happened sequentially, in some order.

• The nondeterminism as to which order we get is acceptable, but
results that are inconsistent with both orderings are not.

• These latter happen when operations overlap, so that the two pro-
cesses see inconsistent views of the account.

• We want the withdrawal operation to act as if it is atomic—as if,
once started, the operation proceeds without interruption and with-
out any overlapping effects from other operations.

Last modified: Thu Apr 24 17:15:50 2014 CS61A: Lecture #34 2

One Solution: Critical Sections

• Some programming languages (e.g., Java) have special syntax for
this. In Python, we can arrange something like this:

manager = CriticalSection()

def withdraw(amount):

with manager:

if amount > self._balance:

raise ValueError("insufficient funds")

else:

self._balance -= amount

return self._balance

• The with construct essentially does this:

manager.__enter__()

try:

if amount > self._balance:

...

finally:

manager.__exit__()

• Idea is that our CriticalSection object should let just one process
through at a time. How?

Last modified: Thu Apr 24 17:15:50 2014 CS61A: Lecture #34 3

Aside: Context managers

• The with statement may be used for anything that requires estab-
lishing a (temporary) local context for doing some action.

• A common use: files:

with open(input_name) as inp, open(output_name, "w") as out:

out.write(inp.read()) # Copy from input to output

• inp and out are local names for two files created by open.

• File objects happen to have __enter__ and __exit__ methods.

• The __exit__ method on files closes them.

• Thus, the program above is guaranteed to close all its files, no mat-
ter what happens.

• [End of Aside]

Last modified: Thu Apr 24 17:15:50 2014 CS61A: Lecture #34 4

Locks

• To implement our critical sections, we’ll need some help from the
operating system or underlying hardware.

• A common low-level construct is the lock or mutex (for “mutual ex-
clusion”): an object that at any given time is “owned” by one process.

• If L is a lock, then

– L.acquire() attempts to own L on behalf of the calling process.
If someone else owns it, the caller waits for it to be release.

– L.release() relinquishes ownership of L (if the calling process
owns it).

Last modified: Thu Apr 24 17:15:50 2014 CS61A: Lecture #34 5

Implementing Critical Regions

• Using locks, it’s easy to create the desired context manager:

from threading import Lock

class CriticalSection:

def __init__(self):

self.__lock = Lock()

def __enter__(self):

self.__lock.acquire()

def __exit__(self, exception_type, exception_val, traceback):

self.__lock.release()

CriticalSectionManager = CriticalSection()

• The extra arguments to __exit__ provide information about the ex-
ception, if any, that caused the with body to be exited.

• (In fact, the bare Lock type itself already has __enter__ and __exit__

procedures, so you don’t really have to define an extra type).

Last modified: Thu Apr 24 17:15:50 2014 CS61A: Lecture #34 6



Granularity

• We’ve envisioned critical sections as being atomic with respect to
all other critical sections.

• Has the advantage of simplicity and safety, but causes unnecessary
waits.

• In fact, different accounts need not coordinate with each other.
We can have a separate critical section manager (or lock) for each
account object:

class BankAccount:

def __init__(self, initial_balance):

self._balance = initial_balance

self._critical = CriticalSection()

def withdraw(self, amount):

with self._critical:

...

• That is, can produce a solution with finer granularity of locks.

Last modified: Thu Apr 24 17:15:50 2014 CS61A: Lecture #34 7

Synchronization

• Another kind of problem arises when different processes must com-
municate. In that case, one may have to wait for the other to send
something.

• This, for example, doesn’t work too well:

class Mailbox:

def __init__(self):

self._queue = []

def deposit(self, msg):

self._queue.append(msg)

def pickup(self):

while not self._queue:

pass

return self._queue.pop()

• Idea is that one process deposits a message for another to pick up
later.

• What goes wrong?

Last modified: Thu Apr 24 17:15:50 2014 CS61A: Lecture #34 8

Problems with the Naive Mailbox

class Mailbox:

def __init__(self):

self._queue = []

def deposit(self, msg):

self._queue.append(msg)

def pickup(self):

while not self._queue:

pass

return self._queue.pop()

• Inconsistency: Two processes picking up mail can find the queue
occupied simultaneously, but only one will succeed in picking up mail,
and the other will get exception.

• Busy-waiting: The loop that waits for a message uses up processor
time.

• Deadlock: If one is running two logical processes on one processor,
busy-waiting can lead to nobody making any progress.

• Starvation: Even without busy-waiting one process can be shut out
from ever getting mail.

Last modified: Thu Apr 24 17:15:50 2014 CS61A: Lecture #34 9

Conditions

• One way to deal with this is to augment locks with conditions:

from threading import Condition

class Mailbox:

def __init__(self):

self._queue = []

self._condition = Condition()

def deposit(self, msg):

with self._condition:

self._queue.append(msg)

self._condition.notify()

def pickup(self):

with self._condition:

while not self._queue:

self._condition.wait()

return self._queue.pop()

• Conditions act like locks with methods wait, notify (and others).

• wait releases the lock, waits for someone to call notify, and then
reacquires the lock.

Last modified: Thu Apr 24 17:15:50 2014 CS61A: Lecture #34 10

Another Approach: Messages

• Turn the problem inside out: instead of client processes deciding
how to coordinate their operations on data, let the data coordinate
its actions.

• From the Mailbox’s perspective, things look like this:

self._queue = []

while True:

wait for a request, R, to deposit or pickup

if R is a deposit of msg:

self.__queue.append(msg)

send back acknowledgement

elif self.__queue and R is a pickup:

msg = self.__queue.pop()

send back msg

• From a bank account’s:

while True:

wait for a request, R, to deposit or withdraw

if R is a deposit of d:

self.balance += d

elif R is a withdrawal of w:

self.balance -= w
Last modified: Thu Apr 24 17:15:50 2014 CS61A: Lecture #34 11

Rendezvous

• Following ideas from C.A.R Hoare, the Ada language used the notion
of a rendezvous for this purpose:

task type Mailbox is

entry deposit(Msg: String);

entry pickup(Msg: out String);

end Mailbox;

task body Mailbox is

Queue: ...

begin

loop

select

accept deposit(Msg: String) do Queue.append(Msg); end;

or when not Queue.empty =>

accept pickup(Msg: out String) do Queue.pop(Msg); end;

end select;

end loop;

end;

Last modified: Thu Apr 24 17:15:50 2014 CS61A: Lecture #34 12



Observation: Processes as Structure

• We’ve been talking about using multiple processes to do multiple
things simultaneously.

• But we can also think of them as expressing logically independent
tasks in a way that makes their independence clear.

• We’ve seen an example already: generators are a kind of highly syn-
chronized process that express some operation (say, traversing a
tree) purely from the point of view of one of the participants (the
tree).

• Operating systems running on single processors may have many users’
processes, but they don’t all run at the same time—they take turns.

• Conceptually, however, these processes are independent and their
operation can be expressed without reference to other processes.

Last modified: Thu Apr 24 17:15:50 2014 CS61A: Lecture #34 13

Concurrent Processes In Python

• Python provides two different kinds of concurrent process: the
thread and (newer) the Process.

• Threads are intended to be used for structural purposes, as in the
last slide, and do not really run in parallel on our Python implementa-
tion.

• Processes are intended to express possibly parallel operation.

Last modified: Thu Apr 24 17:15:50 2014 CS61A: Lecture #34 14

Example of Process

from multiprocessing import Process, Queue

def search(file_name, Q):

with open(file_name, out) as inp:

for line in inp:

if ok(line):

Q.put(line)

if __name__ == ’__main__’:

q = Queue()

p1 = Process(target=search, args=(file1, q))

p1.start()

p2 = Process(target=search, args=(file2, q))

p2.start()

print(q.get()) # prints first result

print(q.get()) # prints second result

p1.join()

p2.join()

Last modified: Thu Apr 24 17:15:50 2014 CS61A: Lecture #34 15


	Lecture 34: Synchronization and Communication 
	Problem From Last Time
	One Solution: Critical Sections
	Aside: Context managers
	Locks
	Implementing Critical Regions
	Granularity
	Synchronization
	Problems with the Naive Mailbox
	Conditions
	Another Approach: Messages
	Rendezvous
	Observation: Processes as Structure
	Concurrent Processes In Python
	Example of Process

