
CS61A Lecture #35: Cryptography

Announcements:

• HKN surveys next Friday: 7.5 bonus points for filling out their sur-
vey on Friday (yes, that means you have to come to lecture).

Last modified: Fri Apr 25 14:02:18 2014 CS61A: Lecture #35 1

Cryptography: Purposes

• Source: Ross Anderson, Security Engineering.

• Cryptography—the study of the design of ciphers—is a tool used to
help meet several goals, among them:

– Privacy: others can’t read our messages.

– Integrity: others can’t change our messages without us knowing.

– Authentication: we know whom we’re talking to.

• Some common terminology: we convert from plaintext to ciphertext
(encryption) and back (decryption).

• Although we typically think of text messages as characters, our al-
gorithms generally process streams of numbers or bits, making use
of standard encodings of characters as numbers.

Last modified: Fri Apr 25 14:02:18 2014 CS61A: Lecture #35 2

Substitution

• Simplest scheme is just to permute the alphabet:

 abcdefghijklmnopqrstuvwxyz

tyler duniabcfghjkmopqsvwxz

• So that

“so long and thanks for all the fish” =>
“ohtchgutygrtpnygbotdhmtycctpn tdion”

• Problem: If we intercept ciphertext for which we know the plain-
text (e.g., we know a message ends with name of the sender), we
learn part of the code.

• Even if we have only ciphertext, we can guess encoding from letter
frequencies.

Last modified: Fri Apr 25 14:02:18 2014 CS61A: Lecture #35 3

Stream Ciphers

• Idea: Use a different encoding for each character position. Enigma
was one example.

• Extreme case is the One-Time Pad: Receiver and sender share ran-
dom key sequence at least as long as all data sent. Each character
of the key specifies an unpredictable substitution cipher.

• Example:

Messages: attack at dawn|oops cancel that order|attack is back on

Key: vnchkjskruwisn|tjcdktjdjsahtjkdhjrizn|akjqltpotpfhsdjrsqieha...

Cipher: vfvhmtrkjtzin |gxrvjvjqlwlglqkwgxhlcd|acbqncowkoghuniee

(key of ’z’ means ’a’ 7→ ’z’, ’b’ 7→ ’ ’, ’c’ 7→ ’a’, etc.)

• Unbreakable, but requires lots of shared key information.

• Integrity problems: If I know message is “Pay to Paul N. Hilfinger
$100.00” can alter it to “Pay to Paul N. Hilfinger $999.00” [How?]

Last modified: Fri Apr 25 14:02:18 2014 CS61A: Lecture #35 4

Aside: A Simple Reversible Combination

• The cipher in the last slide essentially used addition modulo alphabet
size as the way to combine plaintext with a key.

• Usually, we use a different method of combining streams: exclusive
or (xor), which is the “not equal” operations on bits, defined on indi-
vidual bits by x ⊕ y = 0 if x and y are the same, else 1.
Fact: x ⊕ y ⊕ x = y. So, 01100011 ⊕ 10110101 = 11010110;
11010110 ⊕ 10110101 = 01100011.

Last modified: Fri Apr 25 14:02:18 2014 CS61A: Lecture #35 5

Using Random-Number Generators

• Python provides a pseudo-random number generator (used for the
Pig project, e.g.): from an initial value, produces any number of
“random-looking” numbers.

• Consider a function that creates pseudo-random number generators
that produce bits, e.g.:

import random

def bit_stream(seed):

r = random.Random(seed)

return lambda: r.getrandbits(1)

• If two sides of a conversation share the same key to use as a seed,
can create the same approximation to a one-time pad, and thus com-
municate secretly.

• Advantage: key can be much shorter than total amount of data.

• Disadvantage: stream of bits isn’t really random; may be subject to
clever attack (cryptanalysis).

• Several possible encrytion modes used in TLS (Transport Layer Se-
curity) for “secure” web communications have this form.

Last modified: Fri Apr 25 14:02:18 2014 CS61A: Lecture #35 6

Block Ciphers

• So far, have encoded bit-by-bit (or byte-by-byte). Another ap-
proach is to map blocks of bits at a time, allowing them to be mixed
and swapped as well as scrambled.

• Feistel Ciphers: a strategy for generating block ciphers. Break mes-
sage into 2N-bit chunks, and break each chunk into N-bit left and
right halves. Then, put the result through a number of rounds:

Bits N ..2N − 1Bits 0..N − 1

f1

f2

f3

etc.

– Each fi is a “random function” on N-bit
blocks chosen by your key.

– fi does not have to be invertible.

– Nice feature: to decrypt, run back-
wards.

– If the fi are really chosen randomly
enough, these are very good ciphers
with 4 or more rounds.

• The Data Encryption Standard (DES) uses this strategy with 12 rounds.

Last modified: Fri Apr 25 14:02:18 2014 CS61A: Lecture #35 7

A Modern Block Cipher: AES

• Over time, the DES (with 56-bit keys) became increasingly vulnera-
ble to attack.

• In 2001, NIST adopted a new set of ciphers—AES (Advanced En-
cryption Standard) with key sizes of 128, 192, or 256 bits, and a
block size of 128 bits (16 bytes).

• AES approved by the NSA for Top Secret documents.

• The key is first converted into a number of 128-bit (16 byte) “sub-
keys”, one for each round.

• The number of rounds depends on the key size (10 for AES128, 12
for AES192, 14 for AES256).

Last modified: Fri Apr 25 14:02:18 2014 CS61A: Lecture #35 8

An AES Round

Just to give the flavor of the thing, here’s a sketch of what a round
looks like:

• Arrange the 16 byte block into a 4 × 4 matrix of bytes.

• Apply a certain fixed function (the “S box”) byte-by-byte to the
bytes of the matrix.

• Rotate each row of the matrix left by a different amount in each
row (0, 1, 2, and 3 positions, respectively).

• Multiply the matrix by a certain fixed matrix. The coefficient arith-
metic is in GF(256) (the finite field with 256 elements).

• Add (i.e., xor) the subkey for the round.

Last modified: Fri Apr 25 14:02:18 2014 CS61A: Lecture #35 9

Chaining

• It’s possible to abuse a good cipher, making messages vulnerable.

• If you simply break a message into pieces and then encrypt each
piece, an eavesdropper (traditionally named Eve) can tell that two
messages you send are the same, even if she doesn’t know what the
messages are.

• E.g., in advance of the Battle of Midway (WWII), the Allies de-
termined that the target of the Japanese operation was, in fact,
Midway by arranging to have the Japanese intercept and retransmit
in coded form a message containing the word “Midway.” This allowed
them to determine what island other encoded Japanese communica-
tions were referring to.

• Fix: make every encryption of the same text different using various
techniques:

– Add salt: Intersperse random bits at predetermined locations
(ignored on decryption).

– Chaining: before encrypting a block, xor it with the encoding of
the previous block. Start the process off with a throw-away ran-
dom block.

Last modified: Fri Apr 25 14:02:18 2014 CS61A: Lecture #35 10

Public Key Cryptography

• So far, our ciphers have been symmetric: both sides of a conversa-
tion share the same secret information (a key).

• If I haven’t contacted someone before, how can we trade secret
keys so as to use one of these methods?

• One idea is to use public keys so that everyone knows enough to
communicate with us, but not enough to listen in.

• Here, information is asymmetric: we publish a public key that ev-
eryone can know, and keep back a private key.

• Rely on it being easy to decipher messages knowing the private key,
but impractically difficult without it.

• Unfortunately, we haven’t actually proved that any of these public-
key systems really are essentially impractical to crack, and quantum
computing (if made to work at scale) would break the most common
one.

• But for now, all is well.

Last modified: Fri Apr 25 14:02:18 2014 CS61A: Lecture #35 11

Example: Diffie-Hellman key exchange

• Assume that everyone has agreed ahead of time about a large public
prime number p and another number g < p.

• Every person, Y , now chooses a secret number, sy, and publishes the
value KY = gSY mod p next to his name.

• If A (Alice) wants to communicate with B (Bob), she can look up
Bob’s published number, Kb, and use (Kb)

sa mod p as the encrypting
key.

• Bob, seeing a message from Alice, computes (Ka)
sb mod p.

• But Ksa
b ≡ (gsb)sa ≡ gsb·sa ≡ (gsa)sb ≡ (Ka)

sb mod p, so both Bob and
Alice have the same key!

• Nobody else knows this key, because of the difficulty of finding x

such that px = y mod p.

Last modified: Fri Apr 25 14:02:18 2014 CS61A: Lecture #35 12

Other Public-Key Methods

• General idea with public-key methods is that everyone publishes a
public key, Kp, while retaining a secret private key, Ks.

• Typically these keys are very large numbers (hundreds of bits).

• A common method, RSA encryption, uses a public key consisting of
the product pq of two large prime numbers and a value e that has
no factors in common with p − 1 and q − 1. The private key is the
product pq and a value d that can be computed knowing p, q, and e

(specifically, d · e ≡ 1 mod (p − 1)(q − 1)).

• It is very hard to compute p, q, or d (all kept secret) from the
product pq.

• To encrypt message M , compute

C = M e mod pq.

• It is very hard to compute M from C unless you know d But it is
“easy” (with a computer) if you do know:

M = Cd mod pq.

• Why? Uses Euler’s generalization of Fermat’s (Little) Theorem, if
you really must know.

Last modified: Fri Apr 25 14:02:18 2014 CS61A: Lecture #35 13

Signatures

• Suppose I receive a message, M , that supposedly comes from you.
How do I know it does?

• Using public-key methods, this is relatively easy.

• One approach (no details here) is that you first compute a condensa-
tion of M , h(M), where it is very hard to find another message, M ′

such that h(M) = h(M ′) and h(M) is a (big) integer in some limited
range (say 128 bits).

• Now append to your message a value S = f(h(M), Ks), where f is a
“signing function”.

• We choose f so that it has the property that there is an easily
computed function f ′ such that f ′(S,Kp) = h(M).

• So I, by computing h(M) and comparing it to f ′(S,Kp), can tell whether
you signed the message.

Last modified: Fri Apr 25 14:02:18 2014 CS61A: Lecture #35 14

Authentication

• The particular use of Diffie-Hellman key exchange earlier allowed
me to be sure whom I am communicating with.

• Requires that I know a public key of everyone I want to talk to in
advance.

• That’s a lot of information to keep current (and uncorrupted). Can
we cut it down?

• The web uses certificates from a trusted source for this purpose
(in messages to URLs that start with “https”).

• Abstractly, a certificate is a message that is signed by some trusted
third party (a certificate authority, such as VeriSign). Everyone’s
browser knows the public key needed to validate the signature on an
alleged certificate.

• The certificate says (in effect) “entity X (e.g., Amazon.com) has
public key KX .”

• As we’ve seen, you can use that to send communications that only
the intended recipient can understand.

Last modified: Fri Apr 25 14:02:18 2014 CS61A: Lecture #35 15

Another Kind of Hiding: Zero-Knowledge Proofs

• Idea first put forward in 1985 by Shafi Goldwasser, Silvio Micali,
and Charles Rackoff.

• How do I demonstrate to someone that something is true without
revealing anything else (like, for example, the proof that it’s true)?

• Applications to authentication, enforcing honesty while maintaining
privacy, and others.

Last modified: Fri Apr 25 14:02:18 2014 CS61A: Lecture #35 16

Example of Zero-Knowledge Proof

• Consider a huge network (graph) of vertices connected by paths:

1

23

4

5

• Is there a Hamiltonian path in this graph (a path that hits every
vertex exactly once)? A very hard problem for large graphs.

• Suppose I know such a path, and want to convince you that I know
without letting you know the path.

• You give me a sequence of challenges until you are convinced. I could
cheat on any challenge, but you would catch me with probability 0.5.

• First, I choose a random renumbering of the graph (1 goes to 4, 2
goes to 3, etc.) and write it down where I can’t change it later.

• Next, you randomly ask me to show either (1) that I have properly
renumbered the graph, or (2) just the edges of a Hamiltonian path
through the renumbered graph.

Last modified: Fri Apr 25 14:02:18 2014 CS61A: Lecture #35 17

	CS61A Lecture #35: Cryptography
	Cryptography: Purposes
	Substitution
	Stream Ciphers
	Aside: A Simple Reversible Combination
	Using Random-Number Generators
	Block Ciphers
	A Modern Block Cipher: AES
	An AES Round
	Chaining
	Public Key Cryptography
	Example: Diffie-Hellman key exchange
	Other Public-Key Methods
	Signatures
	Authentication
	Another Kind of Hiding: Zero-Knowledge Proofs
	Example of Zero-Knowledge Proof

