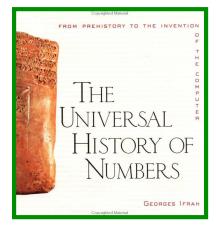
inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 2 – Number Representation

2004-09-01

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

Great book ⇒ The Universal History of Numbers



Happy September 1st!

by Georges Ifrah

CS 61C L02 Number Representation (1)

Garcia, Spring 2004 © UCB

Decimal Numbers: Base 10

Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Example:

3271 =

$(3x10^3) + (2x10^2) + (7x10^1) + (1x10^0)$

Numbers: positional notation

- Number Base $B \Rightarrow B$ symbols per digit:
 - Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Base 2 (Binary): 0, 1
- Number representation:
 - $d_{31}d_{30} \dots d_1d_0$ is a 32 digit number
 - value = $\mathbf{d}_{31} \times \mathbf{B}^{31} + \mathbf{d}_{30} \times \mathbf{B}^{30} + \dots + \mathbf{d}_1 \times \mathbf{B}^1 + \mathbf{d}_0 \times \mathbf{B}^0$
- Binary: 0,1 (In binary digits called "bits") • 0b11010 = $1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$ = 16 + 8 + 2 #s often written = 26
- **0b...** Here 5 digit binary # turns into a 2 digit decimal #
 - Can we find a base that converts to binary easily?

Hexadecimal Numbers: Base 16

- Hexadecimal: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 - Normal digits + 6 more from the alphabet
 - In C, written as 0x... (e.g., 0xFAB5)
- Conversion: Binary Hex
 - 1 hex digit represents 16 decimal values
 - 4 binary digits represent 16 decimal values
 - \Rightarrow 1 hex digit replaces 4 binary digits
- One hex digit is a "nibble". Two is a "byte"
- Example:
 - 1010 1100 0011 (binary) = **0x____**?

Decimal vs. Hexadecimal vs. Binary

Examples:	
1010 1100 0011 (binary) = 0xAC3	
10111 (binary) = 0001 0111 (binary) = 0x17	
0x3F9 = 11 1111 1001 (binary)	
How do we convert between hex and Decimal?	

MEMORIZE!

00	Δ	0000
•••	0	
01	1	0001
02	2	0010
03	3	0011
04	4	0100
05	5	0101
		• - • -
06	6	0110
07	7	0111
08	8	1000
•••	-	
09	9	1001
10	Α	1010
		1011
11	B	
12	С	1100
13	D	1101
	_	
14	E	1110
15	F	1111
	—	

What to do with representations of numbers?

- Just what we do with numbers!
 - Add them
 1
 - Subtract them 1 0 1 0
 - Multiply them + 0 1 1
 - Divide them
 - Compare them
- Example: 10 + 7 = 17
 - ...so simple to add in binary that we can build circuits to do it!
 - subtraction just as you would in decimal
 - Comparison: How do you tell if X > Y ?

1

1

0

0

0

Which base do we use?

- Decimal: great for humans, especially when doing arithmetic
- Hex: if human looking at long strings of binary numbers, its much easier to convert to hex and look 4 bits/symbol
 - Terrible for arithmetic on paper
- Binary: what computers use; you will learn how computers do +, -, *, /
 - To a computer, numbers always binary
 - Regardless of how number is written:
 - $32_{ten} = 32_{10} = 0x20 = 100000_2 = 0b100000$
 - Use subscripts "ten", "hex", "two" in book, slides when might be confusing

BIG IDEA: Bits can represent anything!!

- Characters?
 - 26 letters \Rightarrow 5 bits (2⁵ = 32)
 - upper/lower case + punctuation \Rightarrow 7 bits (in 8) ("ASCII")
 - standard code to cover all the world's languages ⇒ 8,16,32 bits ("Unicode") www.unicode.com
- Logical values?
 - 0 \Rightarrow False, 1 \Rightarrow True
- colors ? Ex: *Red (00) Green (01) Blue (11)*
- locations / addresses? commands?
- MEMORIZE: N bits \Rightarrow at most 2^N things

How to Represent Negative Numbers?

- So far, <u>unsigned numbers</u>
- Obvious solution: define leftmost bit to be sign!
 - 0 ⇒ +, 1 ⇒ -
 - Rest of bits can be numerical value of number
- Representation called sign and magnitude
- MIPS uses 32-bit integers. +1_{ten} would be:
 0000 0000 0000 0000 0000 0000 0000

Shortcomings of sign and magnitude?

- Arithmetic circuit complicated
 - Special steps depending whether signs are the same or not
- Also, <u>two</u> zeros
 - $0x0000000 = +0_{ten}$
 - $0x8000000 = -0_{ten}$
 - What would two 0s mean for programming?
- Therefore sign and magnitude abandoned

Administrivia

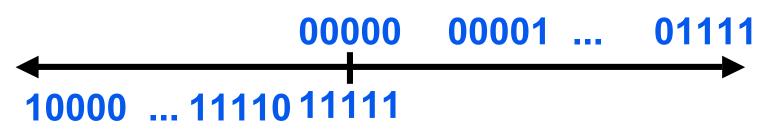
- Firmware (n) : a set of computer instructions used so frequently that it is stored on a memory chip in a computer rather than being part of a program. [MS Word Dictionary]
- Look at class website often!
- Reading for next Wed: K&R Ch1-4
 - 1st Reading quiz due Wed [if not up by 6pm the day before, it's not due & will be postponed]
- Labs need to be finished in your lab session (& only your lab) unless extended by your TA
 - +1 bonus pt if you finish your lab in the first hour!
- Homework #1 up now, due Wed @ 11:59pm

CS 61C L02 Number Representation (11)

Garcia, Spring 2004 © UCB

Another try: complement the bits

- Example: $7_{10} = 00111_2 7_{10} = 11000_2$
- Called <u>One's Complement</u>
- Note: positive numbers have leading 0s, negative numbers have leadings 1s.



- What is -00000 ? Answer: 11111
- How many positive numbers in N bits?

Shortcomings of One's complement?

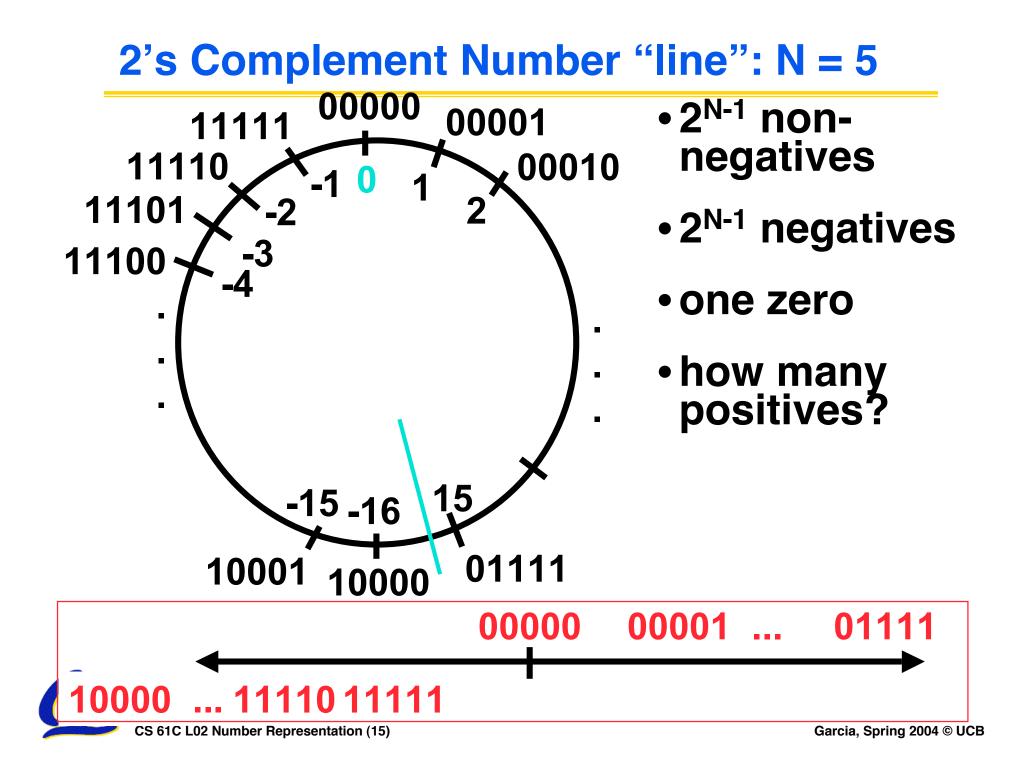
- Arithmetic still a somewhat complicated.
- Still two zeros
 - $0 \times 00000000 = +0_{ten}$
- Although used for awhile on some computer products, one's complement was eventually abandoned because another solution was better.

Standard Negative Number Representation

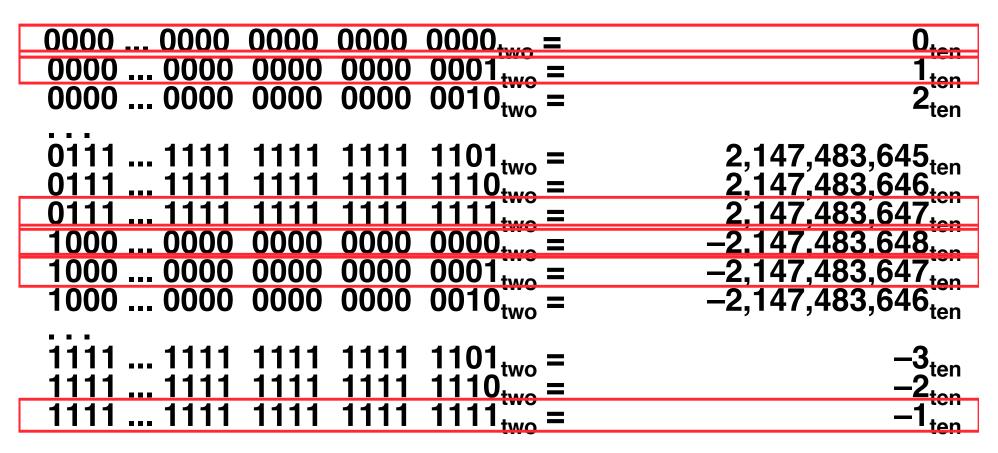
- What is result for unsigned numbers if tried to subtract large number from a small one?
 - Would try to borrow from string of leading 0s, so result would have a string of leading 1s

- $3 - 4 \Rightarrow 00...0011 - 00...0100 = 11...1111$

- With no obvious better alternative, pick representation that made the hardware simple
- As with sign and magnitude, leading $0s \Rightarrow positive$, leading $1s \Rightarrow negative$
 - 000000...xxx is ≥ 0, 111111...xxx is < 0
 - except 1...1111 is -1, not -0 (as in sign & mag.)
- This representation is Two's Complement



Two's Complement for N=32



- One zero; 1st bit called sign bit
- 1 "extra" negative:no positive 2,147,483,648_{ten}

Two's Complement Formula

 Can represent positive <u>and negative</u> numbers in terms of the bit value times a power of 2:

 $d_{31} x (-(2^{31}) + d_{30} x 2^{30} + ... + d_2 x 2^2 + d_1 x 2^1 + d_0 x 2^0$

- Example: 1101_{two}
 - $= 1x-(2^3) + 1x2^2 + 0x2^1 + 1x2^0$
 - $= -2^3 + 2^2 + 0 + 2^0$
 - = <mark>-8</mark> + 4 + 0 + 1
 - = <mark>-8</mark> + 5
 - = -3_{ten}

Two's Complement shortcut: Negation

- Change every 0 to 1 and 1 to 0 (invert or complement), then add 1 to the result
- Proof: Sum of number and its (one's) complement must be 111...111_{two}

However, $111...111_{two} = -1_{ten}$

Let $x' \Rightarrow$ one's complement representation of x

Then $x + x' = -1 \Rightarrow x + x' + 1 = 0 \Rightarrow x' + 1 = -x$

Two's comp. shortcut: Sign extension

- Convert 2's complement number rep. using n bits to more than n bits
- Simply replicate the most significant bit (sign bit) of smaller to fill new bits
 - •2's comp. positive number has infinite 0s
 - •2's comp. negative number has infinite 1s
 - Binary representation hides leading bits;
 sign extension restores some of them
 - •16-bit -4_{ten} to 32-bit:

```
1111 1111 1111 1100<sub>two</sub>
```

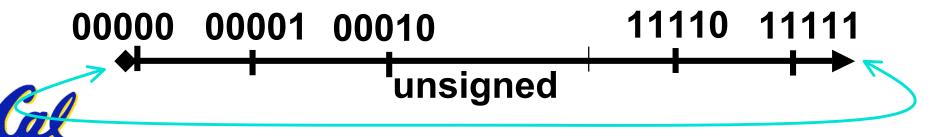
1111 1111 1111 1111 1111 1100_{two}

CS 61C L02 Number Representation (19)

Garcia, Spring 2004 © UCB

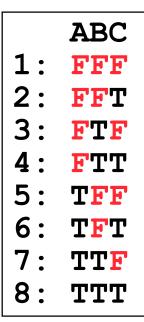
What if too big?

- Binary bit patterns above are simply representatives of numbers. Strictly speaking they are called "numerals".
- Numbers really have an ∞ number of digits
 - with almost all being same (00...0 or 11...1) except for a few of the rightmost digits
 - Just don't normally show leading digits
- If result of add (or -, *, /) cannot be represented by these rightmost HW bits, <u>overflow</u> is said to have occurred.



Peer Instruction Question

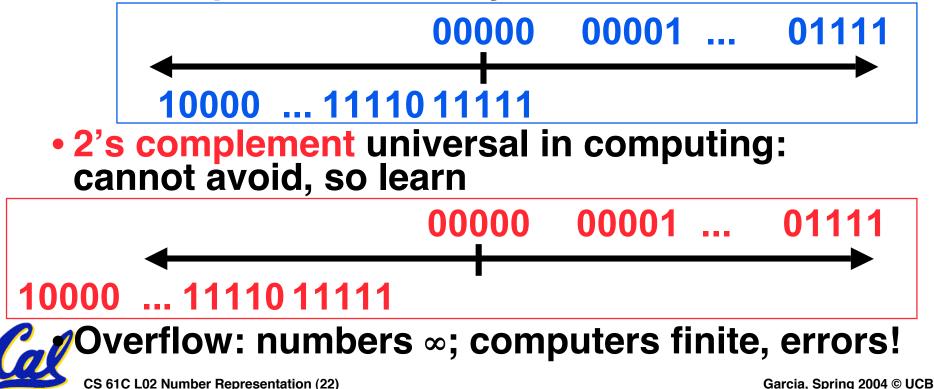
- $Y = 0011 \ 1011 \ 1001 \ 1010 \ 1000 \ 1010 \ 0000 \ 0000_{two}$
- A. X > Y (if signed)
- B. X > Y (if unsigned)



Garcia, Spring 2004 © UCB

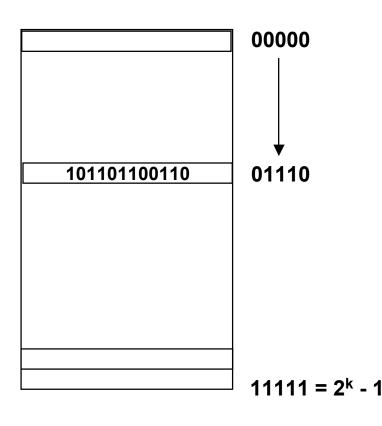
And in Conclusion...

- We represent "things" in computers as particular bit patterns: N bits $\Rightarrow 2^{N}$
- Decimal for human calculations, binary for computers, hex to write binary more easily
- 1's complement mostly abandoned



- Peer instruction let's us skip example slides since you are expected to read book and lecture notes beforehand, but we include them for your review
- Slides shown in logical sequence order

BONUS: Numbers represented in memory



- Memory is a place to store bits
- A *word* is a fixed number of bits (eg, 32) at an address
- Addresses are naturally represented as unsigned numbers in C

BONUS: Signed vs. Unsigned Variables

- Java just declares integers int
 - Uses two's complement
- C has declaration int also
 - Declares variable as a signed integer
 - Uses two's complement
- Also, C declaration unsigned int
 - Declares a unsigned integer
 - Treats 32-bit number as unsigned integer, so most significant bit is part of the number, not a sign bit

