
CS 61C L04 C Pointers (1) Garcia, Fall 2004 © UCB

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture 4 – C Pointers
 2004-09-08

Cal flies over Air Force ⇒
 We’re ranked 13th in the US
 and dominated the Falcons

 on Saturday 56-14. Next
game Sat against New Mexico St.

CS 61C L04 C Pointers (2) Garcia, Fall 2004 © UCB

Putting it all in perspective…

“If the automobile had followed the
same development cycle as the

computer, a Rolls-Royce would today
cost $100, get a million miles per
gallon, and explode once a year,

killing everyone inside.”

– Robert X. Cringely

CS 61C L04 C Pointers (4) Garcia, Fall 2004 © UCB

Pointers & Allocation (1/2)

•After declaring a pointer:
int *ptr;

ptr doesn’t actually point to anything
yet. We can either:

• make it point to something that already
exists, or

• allocate room in memory for something
new that it will point to… (next time)

CS 61C L04 C Pointers (5) Garcia, Fall 2004 © UCB

Pointers & Allocation (2/2)

•Pointing to something that already
exists:
int *ptr, var1, var2;
var1 = 5;
ptr = &var1;
var2 = *ptr;

•var1 and var2 have room implicitly
allocated for them.

ptr var1 ? var2 ?5 5?

CS 61C L04 C Pointers (6) Garcia, Fall 2004 © UCB

More C Pointer Dangers

•Declaring a pointer just allocates
space to hold the pointer – it does not
allocate something to be pointed to!
•Local variables in C are not initialized,
they may contain anything.
•What does the following code do?

void f()
{
 int *ptr;
 *ptr = 5;
}

CS 61C L04 C Pointers (7) Garcia, Fall 2004 © UCB

Arrays (1/6)

•Declaration:
int ar[2];

declares a 2-element integer array.
 int ar[] = {795, 635};
declares and fills a 2-elt integer array.
•Accessing elements:

ar[num];

returns the numth element.

CS 61C L04 C Pointers (8) Garcia, Fall 2004 © UCB

Arrays (2/6)

•Arrays are (almost) identical to
pointers
•char *string and char string[] are
nearly identical declarations

• They differ in very subtle ways:
incrementing, declaration of filled arrays

•Key Concept: An array variable is a
pointer to the first element.

CS 61C L04 C Pointers (9) Garcia, Fall 2004 © UCB

Arrays (3/6)

•Consequences:
•ar is a pointer
•ar[0] is the same as *ar
•ar[2] is the same as *(ar+2)
• We can use pointer arithmetic to access
arrays more conveniently.

•Declared arrays are only allocated
while the scope is valid

char *foo() {
 char string[32]; ...;
 return string;
} is incorrect

CS 61C L04 C Pointers (10) Garcia, Fall 2004 © UCB

Arrays (4/6)

•Array size n; want to access from 0 to
n-1, but test for exit by comparing to
address one element past the array
 int ar[10], *p, *q, sum = 0;
...
p = &ar[0]; q = &ar[10];
while (p != q)
 /* sum = sum + *p; p = p + 1; */

sum += *p++;
• Is this legal?

•C defines that one element past end of
array must be a valid address, i.e., not
cause an bus error or address error

CS 61C L04 C Pointers (11) Garcia, Fall 2004 © UCB

Arrays (5/6)

•Array size n; want to access from 0 to
n-1, so you should use counter AND
utilize a constant for declaration & incr

• Wrong
int i, ar[10];
for(i = 0; i < 10; i++){ ... }

• Right
#define ARRAY_SIZE 10
int i, a[ARRAY_SIZE];
for(i = 0; i < ARRAY_SIZE; i++){ ... }

•Why? SINGLE SOURCE OF TRUTH
• You’re utilizing indirection and avoiding
maintaining two copies of the number 10

CS 61C L04 C Pointers (12) Garcia, Fall 2004 © UCB

Arrays (6/6)

•Pitfall: An array in C does not know its
own length, & bounds not checked!

• Consequence: We can accidentally
access off the end of an array.

• Consequence: We must pass the array
and its size to a procedure which is
going to traverse it.

•Segmentation faults and bus errors:
• These are VERY difficult to find;
be careful!

• You’ll learn how to debug these in lab…

CS 61C L04 C Pointers (13) Garcia, Fall 2004 © UCB

Pointer Arithmetic (1/3)

•Since a pointer is just a memory
address, we can add to it to traverse
an array.
•ptr+1 will return a pointer to the next
array element.
•(*ptr)+1 vs. *ptr++ vs. *(ptr+1) ?
•What if we have an array of large
structs (objects)?

• C takes care of it: In reality, ptr+1
doesn’t add 1 to the memory address, it
adds the size of the array element.

CS 61C L04 C Pointers (14) Garcia, Fall 2004 © UCB

Pointer Arithmetic (2/3)
•So what’s valid pointer arithmetic?

• Add an integer to a pointer.
• Subtract 2 pointers (in the same array).
• Compare pointers (<, <=, ==, !=, >, >=)
• Compare pointer to NULL (indicates that
the pointer points to nothing).

•Everything else is illegal since it
makes no sense:

• adding two pointers
• multiplying pointers
• subtract pointer from integer

CS 61C L04 C Pointers (15) Garcia, Fall 2004 © UCB

int get(int array[], int n)
{
 return (array[n]);

/* OR */
 return *(array + n);
}

Pointer Arithmetic (3/3)

•C knows the size of the thing a pointer
points to – every addition or
subtraction moves that many bytes.
•So the following are equivalent:

CS 61C L04 C Pointers (16) Garcia, Fall 2004 © UCB

Pointers in C
•Why use pointers?

• If we want to pass a huge struct or array,
it’s easier to pass a pointer than the
whole thing.

• In general, pointers allow cleaner, more
compact code.

•So what are the drawbacks?
• Pointers are probably the single largest
source of bugs in software, so be careful
anytime you deal with them.

• Dangling reference (premature free)
• Memory leaks (tardy free)

CS 61C L04 C Pointers (17) Garcia, Fall 2004 © UCB

C Pointer Dangers
•Unlike Java, C lets you cast a value of
any type to any other type without
performing any checking.

int x = 1000;

int *p = x; /* invalid */

int *q = (int *) x; /* valid */

•The first pointer declaration is invalid
since the types do not match.
•The second declaration is valid C but is
almost certainly wrong

• Is it ever correct?

CS 61C L04 C Pointers (18) Garcia, Fall 2004 © UCB

Administrivia

• Read K&R 6 for Friday
• There is a language called D!

•www.digitalmars.com/d/

• Answers to the reading quizzes?
• Ask your TA in discussion

• Homework expectations
• Readers don’t have time to fix your programs

which have to run on lab machines.
• Code that doesn’t compile or fails all of the

autograder tests ⇒ 0

• Administrivia from Lecture 1
CS 61C L04 C Pointers (19) Garcia, Fall 2004 © UCB

Administrivia

• Slip days
• You get 3 “slip days” per year to use for any

homework assignment or project
• They are used at 1-day increments. Thus 1

minute late = 1 slip day used.
• They’re recorded automatically (by checking

submission time) so you don’t need to tell us
when you’re using them

• Once you’ve used all of your slip days, when a
project/hw is late, it’s … 0 points.

• If you submit twice, we ALWAYS grade later,
and deduct slip days appropriately

• You no longer need to tell anyone how your dog
ate your computer.

• You should really save for a rainy day … we all
get sick and/or have family emergencies!

CS 61C L04 C Pointers (20) Garcia, Fall 2004 © UCB

C Strings

•A string in C is just an array of
characters.

char string[] = "abc";

•How do you tell how long a string is?
• Last character is followed by a 0 byte
(null terminator)
int strlen(char s[])
{
 int n = 0;
 while (s[n] != 0) n++;
 return n;
}

CS 61C L04 C Pointers (21) Garcia, Fall 2004 © UCB

C Strings Headaches

•One common mistake is to forget to
allocate an extra byte for the null
terminator.
•More generally, C requires the
programmer to manage memory
manually (unlike Java or C++).

• When creating a long string by
concatenating several smaller strings,
the programmer must insure there is
enough space to store the full string!

• What if you don’t know ahead of time
how big your string will be?

• Buffer overrun security holes!

CS 61C L04 C Pointers (22) Garcia, Fall 2004 © UCB

Common C Errors

•There is a difference between
assignment and equality
•a = b is assignment
•a == b is an equality test

•This is one of the most common
errors for beginning C programmers!

CS 61C L04 C Pointers (23) Garcia, Fall 2004 © UCB

Pointer Arithmetic Peer Instruction Q

How many of the following are invalid?
I. pointer + integer
II. integer + pointer
III. pointer + pointer
IV. pointer – integer
V. integer – pointer
VI. pointer – pointer
VII. compare pointer to pointer
VIII. compare pointer to integer
IX. compare pointer to 0
X. compare pointer to NULL

#invalid
 1
 2
 3
 4
 5
 6
 7
 8
 9
(1)0

CS 61C L04 C Pointers (28) Garcia, Fall 2004 © UCB

“And in Conclusion…”
•Pointers and arrays are virtually same
•C knows how to increment pointers
•C is an efficient language, with little
protection

• Array bounds not checked
• Variables not automatically initialized

• (Beware) The cost of efficiency is
more overhead for the programmer.

• “C gives you a lot of extra rope but be
careful not to hang yourself with it!”

CS 61C L04 C Pointers (29) Garcia, Fall 2004 © UCB

Bonus Slide (near end): Arrays/Pointers

•An array name is a read-only pointer
to the 0th element of the array.
•An array parameter can be declared as
an array or a pointer; an array
argument can be passed as a pointer.

int strlen(char s[])
{
 int n = 0;
 while (s[n] != 0)
 n++;
 return n;
}

int strlen(char *s)
{
 int n = 0;
 while (s[n] != 0)
 n++;
 return n;
}

Could be written:
while (s[n])

CS 61C L04 C Pointers (30) Garcia, Fall 2004 © UCB

Bonus Slide (near end): Pointer Arithmetic

•We can use pointer arithmetic to
“walk” through memory:

°C automatically adjusts the pointer by
the right amount each time (i.e., 1 byte
for a char, 4 bytes for an int, etc.)

void copy(int *from, int *to, int n) {
 int i;
 for (i=0; i<n; i++) {
 *to++ = *from++;
 }
}

